10 research outputs found

    Arrowhead compliant virtual market of energy

    Get PDF
    © 2014 IEEE. Industrial processes use energy to transform raw materials and intermediate goods into final products. Many efforts have been done on the minimization of energy costs in industrial plants. Apart from working on 'how' an industrial process is implemented, it is possible to reduce the energy costs by focusing on 'when' it is performed. Although, some manufacturing plants (e.g. refining or petrochemical plants) can be inflexible with respect to time due to interdependencies in processes that must be respected for performance and safety reasons, there are other industrial segments, such as alumina plants or discrete manufacturing, with more degrees of flexibility. These manufacturing plants can consider a more flexible scheduling of the most energy-intensive processes in response to dynamic prices and overall condition of the electricity market. In this scenario, requests for energy can be encoded by means of a formal structure called flex-offers, then aggregated (joining several flex-offers into a bigger one) and sent to the market, scheduled, disaggregated and transformed into consumption plans, and eventually, into production schedules for given industrial plant. In this paper, we describe the flex-offer concept and how it can be applied to industrial and home automation scenarios. The architecture proposed in this paper aims to be adaptable to multiples scenarios (industrial, home and building automation, etc.), thus providing the foundations for different concept implementations using multiple technologies or supporting various kinds of devices

    Increasing the diversity of dietary fibers in a daily-consumed bread modifies gut microbiota and metabolic profile in subjects at cardiometabolic risk

    No full text
    International audienceSome cardiometabolic risk factors such as dyslipidemia and insulin resistance are known to be associated with low gut microbiota richness. A link between gut microbiota richness and the diversity of consumed dietary fibers (DF) has also been reported. We introduced a larger diversity of consumed DF by using a daily consumed bread in subjects at cardiometabolic risk and assessed the impacts on the composition and functions of gut microbiota as well as on cardiometabolic profile. Thirty-nine subjects at cardiometabolic risk were included in a double-blind, randomized, cross-over, twice 8-week study, and consumed daily 150 g of standard bread or enriched with a 7-dietary fiber mixture (5.55 g and 16.05 g of fibers, respectively). Before and after intervention, stool samples were collected for gut microbiota analysis from species determination down to gene-level abundance using shotgun metagenomics, and cardiometabolic profile was assessed. Multi-fiber bread consumption significantly decreased Bacteroides vulgatus, whereas it increased Parabacteroides distasonis, Fusicatenibacter saccharivorans, an unclassified Acutalibacteraceae and an unclassified Eisenbergiella (q \textless 0.1). The fraction of gut microbiota carrying the gene coding for five families/subfamilies of glycoside hydrolases (CAZymes) were also increased and negatively correlated with peaks and total/incremental area under curve (tAUC/iAUC) of postprandial glycemia and insulinemia. Compared to control bread, multi-fiber bread decreased total cholesterol (-0.42 mM; q \textless 0.01), LDL cholesterol (-0.36 mM; q \textless 0.01), insulin (-2.77 mIU/l; q \textless 0.05), and HOMA (-0.78; q \textless 0.05). In conclusion, increasing the diversity of DF in a daily consumed product modifies gut microbiota composition and function and could be a relevant nutritional tool to improve cardiometabolic profile

    Primary liver cells cultured on carbon nanotube substrates for liver tissue engineering and drug discovery applications

    Get PDF
    Here, we explore the use of two- and three-dimensional scaffolds of multiwalled-carbon nanotubes (MWNTs) for hepatocyte cell culture. Our objective is to study the use of these scaffolds in liver tissue engineering and drug discovery. In our experiments, primary rat hepatocytes, the parenchymal (main functional) cell type in the liver, were cultured on aligned nanogrooved MWNT sheets, MWNT yarns, or standard 2-dimensional culture conditions as a control. We find comparable cell viability between all three culture conditions but enhanced production of the hepatocytespecific marker albumin for cells cultured on MWNTs. The basal activity of two clinically relevant cytochrome P450 enzymes, CYP1A2 and CYP3A4, are similar on all substrates, but we find enhanced induction of CYP1A2 for cells on the MWNT sheets. Our data thus supports the use of these substrates for applications including tissue engineering and enhancing liver-specific functions, as well as in in vitro model systems with enhanced predictive capability in drug discovery and development
    corecore