106 research outputs found
Large Deviations Analysis for Distributed Algorithms in an Ergodic Markovian Environment
We provide a large deviations analysis of deadlock phenomena occurring in
distributed systems sharing common resources. In our model transition
probabilities of resource allocation and deallocation are time and space
dependent. The process is driven by an ergodic Markov chain and is reflected on
the boundary of the d-dimensional cube. In the large resource limit, we prove
Freidlin-Wentzell estimates, we study the asymptotic of the deadlock time and
we show that the quasi-potential is a viscosity solution of a Hamilton-Jacobi
equation with a Neumann boundary condition. We give a complete analysis of the
colliding 2-stacks problem and show an example where the system has a stable
attractor which is a limit cycle
Recurrence of biased quantum walks on a line
The Polya number of a classical random walk on a regular lattice is known to
depend solely on the dimension of the lattice. For one and two dimensions it
equals one, meaning unit probability to return to the origin. This result is
extremely sensitive to the directional symmetry, any deviation from the equal
probability to travel in each direction results in a change of the character of
the walk from recurrent to transient. Applying our definition of the Polya
number to quantum walks on a line we show that the recurrence character of
quantum walks is more stable against bias. We determine the range of parameters
for which biased quantum walks remain recurrent. We find that there exist
genuine biased quantum walks which are recurrent.Comment: Journal reference added, minor corrections in the tex
Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs
In recent years several studies have been supporting the existence of a close relationship in terms of function and progeny
between Mesenchymal Stem Cells (MSCs) and Pericytes. This concept has opened new perspectives for the application of
MSCs in Tissue Engineering (TE), with special interest for the pre-vascularization of cell dense constructs. In this work, cell
sheet technology was used to create a scaffold-free construct composed of osteogenic, endothelial and perivascular-like
(CD146+) cells for improved in vivo vessel formation, maturation and stability. The CD146 pericyte-associated phenotype
was induced from human bone marrow mesenchymal stem cells (hBMSCs) by the supplementation of standard culture
medium with TGF-b1. Co-cultured cell sheets were obtained by culturing perivascular-like (CD146+) cells and human
umbilical vein endothelial cells (HUVECs) on an hBMSCs monolayer maintained in osteogenic medium for 7 days. The
perivascular-like (CD146+) cells and the HUVECs migrated and organized over the collagen-rich osteogenic cell sheet,
suggesting the existence of cross-talk involving the co-cultured cell types. Furthermore the presence of that particular ECM
produced by the osteoblastic cells was shown to be the key regulator for the singular observed organization. The
osteogenic and angiogenic character of the proposed constructs was assessed in vivo. Immunohistochemistry analysis of
the explants revealed the integration of HUVECs with the host vasculature as well as the osteogenic potential of the created
construct, by the expression of osteocalcin. Additionally, the analysis of the diameter of human CD146 positive blood
vessels showed a higher mean vessel diameter for the co-cultured cell sheet condition, reinforcing the advantage of the
proposed model regarding blood vessels maturation and stability and for the in vitro pre-vascularization of TE constructs.Funding provided by Fundacao para a Ciencia e a Tecnologia project Skingineering (PTDC/SAU-OSM/099422/2008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering
Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites
Thrombocytopenia and platelet transfusions in ICU patients: an international inception cohort study (PLOT-ICU)
Purpose
Thrombocytopenia (platelet count < 150 × 109/L) is common in intensive care unit (ICU) patients and is likely associated with worse outcomes. In this study we present international contemporary data on thrombocytopenia in ICU patients.
Methods
We conducted a prospective cohort study in adult ICU patients in 52 ICUs across 10 countries. We assessed frequencies of thrombocytopenia, use of platelet transfusions and clinical outcomes including mortality. We evaluated pre-selected potential risk factors for the development of thrombocytopenia during ICU stay and associations between thrombocytopenia at ICU admission and 90-day mortality using pre-specified logistic regression analyses.
Results
We analysed 1166 ICU patients; the median age was 63 years and 39.5% were female. Overall, 43.2% (95% confidence interval (CI) 40.4–46.1) had thrombocytopenia; 23.4% (20–26) had thrombocytopenia at ICU admission, and 19.8% (17.6–22.2) developed thrombocytopenia during their ICU stay. Non-AIDS-, non-cancer-related immune deficiency, liver failure, male sex, septic shock, and bleeding at ICU admission were associated with the development of thrombocytopenia during ICU stay. Among patients with thrombocytopenia, 22.6% received platelet transfusion(s), and 64.3% of in-ICU transfusions were prophylactic. Patients with thrombocytopenia had higher occurrences of bleeding and death, fewer days alive without the use of life-support, and fewer days alive and out of hospital. Thrombocytopenia at ICU admission was associated with 90-day mortality (adjusted odds ratio 1.7; 95% CI 1.19–2.42).
Conclusion
Thrombocytopenia occurred in 43% of critically ill patients and was associated with worse outcomes including increased mortality. Platelet transfusions were given to 23% of patients with thrombocytopenia and most were prophylactic.publishedVersio
Biofabrication: an overview of the approaches used for printing of living cells
The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs
Opinions de nos lecteurs
Guillotin L. Opinions de nos lecteurs. In: Manuel général de l'instruction primaire : journal hebdomadaire des instituteurs. 68e année, tome 37, 1901. p. 822
- …