214 research outputs found

    The Einstein-Vlasov sytem/Kinetic theory

    Get PDF
    The main purpose of this article is to guide the reader to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades where the main focus has been on nonrelativistic- and special relativistic physics, e.g. to model the dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In 1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (e.g. fluid models). The first part of this paper gives an introduction to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental in order to get a good comprehension of kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity (http://www.livingreviews.org

    Multipole radiation in a collisonless gas coupled to electromagnetism or scalar gravitation

    Full text link
    We consider the relativistic Vlasov-Maxwell and Vlasov-Nordstr\"om systems which describe large particle ensembles interacting by either electromagnetic fields or a relativistic scalar gravity model. For both systems we derive a radiation formula analogous to the Einstein quadrupole formula in general relativity.Comment: 21 page

    Global Solution to the Relativistic Enskog Equation With Near-Vacuum Data

    Full text link
    We give two hypotheses of the relativistic collision kernal and show the existence and uniqueness of the global mild solution to the relativistic Enskog equation with the initial data near the vacuum for a hard sphere gas.Comment: 6 page

    Making the news interesting: understanding the relationship between familiarity and interest

    Get PDF
    News feeds are an important element of information encountering, feeding our (new) interests but also leading to a state of information overload. Current solutions often select information similar to the user's interests. However, long-term interest in one topic, and being highly familiar with that topic, does not necessarily imply an actual interest response will occur when more of the same topic is selected. This study explores how important familiarity is in predicting an interest response. In a study with 30 subjects, interest was manipulated by topical familiarity using novel stimuli from a popular news source. This study shows, within this context, familiarity is moderately important for an interest response: familiarity does indeed make the news interesting, but only to a certain extent. The results set a baseline for predicting interest during information encountering, indicating familiarity is important, but not the only influential variable a system should consider when selecting information for users

    Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials

    Full text link
    In this paper it is shown that unique solutions to the relativistic Boltzmann equation exist for all time and decay with any polynomial rate towards their steady state relativistic Maxwellian provided that the initial data starts out sufficiently close in LL^\infty_\ell. If the initial data are continuous then so is the corresponding solution. We work in the case of a spatially periodic box. Conditions on the collision kernel are generic in the sense of (Dudy{\'n}ski and Ekiel-Je{\.z}ewska, Comm. Math. Phys., 1988); this resolves the open question of global existence for the soft potentials.Comment: 64 page

    The Vlasov limit and its fluctuations for a system of particles which interact by means of a wave field

    Full text link
    In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun. Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied the joint dynamics of a classical point particle and a wave type generalization of the Newtonian gravity potential, coupled in a regularized way. In the present paper the many-body dynamics of this model is studied. The Vlasov continuum limit is obtained in form equivalent to a weak law of large numbers. We also establish a central limit theorem for the fluctuations around this limit.Comment: 68 pages. Smaller corrections: two inequalities in sections 3 and two inequalities in section 4, and definition of a Banach space in appendix A1. Presentation of LLN and CLT in section 4.3 improved. Notation improve

    Decay and Continuity of Boltzmann Equation in Bounded Domains

    Full text link
    Boundaries occur naturally in kinetic equations and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: inflow, bounce-back reflection, specular reflection, and diffuse reflection. We establish exponential decay in LL^{\infty} norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set of the velocity at the boundary. Our contribution is based on a new L2L^{2} decay theory and its interplay with delicate % L^{\infty} decay analysis for the linearized Boltzmann equation, in the presence of many repeated interactions with the boundary.Comment: 89 pages

    Small BGK waves and nonlinear Landau damping

    Full text link
    Consider 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space W^{s,p} (p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial travelling wave solutions (BGK waves) with arbitrary minimal period and traveling speed. This implies that nonlinear Landau damping is not true in W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period. Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long time dynamics is very rich, including travelling BGK waves, unstable homogeneous states and their possible invariant manifolds. Second, it is shown that for homogeneous equilibria satisfying Penrose's linear stability condition, there exist no nontrivial travelling BGK waves and unstable homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore, when p=2,we prove that there exist no nontrivial invariant structures in the H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be relatively simple. We also demonstrate that linear damping holds for initial perturbations in very rough spaces, for linearly stable homogeneous state. This suggests that the contrasting dynamics in W^{s,p} spaces with the critical power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to the linear level

    Global existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting

    Get PDF
    The initial value problem for the Vlasov-Poisson system is by now well understood in the case of an isolated system where, by definition, the distribution function of the particles as well as the gravitational potential vanish at spatial infinity. Here we start with homogeneous solutions, which have a spatially constant, non-zero mass density and which describe the mass distribution in a Newtonian model of the universe. These homogeneous states can be constructed explicitly, and we consider deviations from such homogeneous states, which then satisfy a modified version of the Vlasov-Poisson system. We prove global existence and uniqueness of classical solutions to the corresponding initial value problem for initial data which represent spatially periodic deviations from homogeneous states.Comment: 23 pages, Latex, report #
    corecore