214 research outputs found
The Einstein-Vlasov sytem/Kinetic theory
The main purpose of this article is to guide the reader to theorems on global
properties of solutions to the Einstein-Vlasov system. This system couples
Einstein's equations to a kinetic matter model. Kinetic theory has been an
important field of research during several decades where the main focus has
been on nonrelativistic- and special relativistic physics, e.g. to model the
dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In
1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov
system. Since then many theorems on global properties of solutions to this
system have been established. The Vlasov equation describes matter
phenomenologically and it should be stressed that most of the theorems
presented in this article are not presently known for other such matter models
(e.g. fluid models). The first part of this paper gives an introduction to
kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is
introduced. We believe that a good understanding of kinetic theory in
non-curved spacetimes is fundamental in order to get a good comprehension of
kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity
(http://www.livingreviews.org
Multipole radiation in a collisonless gas coupled to electromagnetism or scalar gravitation
We consider the relativistic Vlasov-Maxwell and Vlasov-Nordstr\"om systems
which describe large particle ensembles interacting by either electromagnetic
fields or a relativistic scalar gravity model. For both systems we derive a
radiation formula analogous to the Einstein quadrupole formula in general
relativity.Comment: 21 page
Global Solution to the Relativistic Enskog Equation With Near-Vacuum Data
We give two hypotheses of the relativistic collision kernal and show the
existence and uniqueness of the global mild solution to the relativistic Enskog
equation with the initial data near the vacuum for a hard sphere gas.Comment: 6 page
Making the news interesting: understanding the relationship between familiarity and interest
News feeds are an important element of information encountering, feeding our (new) interests but also leading to a state of information overload. Current solutions often select information similar to the user's interests. However, long-term interest in one topic, and being highly familiar with that topic, does not necessarily imply an actual interest response will occur when more of the same topic is selected. This study explores how important familiarity is in predicting an interest response. In a study with 30 subjects, interest was manipulated by topical familiarity using novel stimuli from a popular news source. This study shows, within this context, familiarity is moderately important for an interest response: familiarity does indeed make the news interesting, but only to a certain extent. The results set a baseline for predicting interest during information encountering, indicating familiarity is important, but not the only influential variable a system should consider when selecting information for users
Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials
In this paper it is shown that unique solutions to the relativistic Boltzmann
equation exist for all time and decay with any polynomial rate towards their
steady state relativistic Maxwellian provided that the initial data starts out
sufficiently close in . If the initial data are continuous then
so is the corresponding solution. We work in the case of a spatially periodic
box. Conditions on the collision kernel are generic in the sense of
(Dudy{\'n}ski and Ekiel-Je{\.z}ewska, Comm. Math. Phys., 1988); this resolves
the open question of global existence for the soft potentials.Comment: 64 page
The Vlasov limit and its fluctuations for a system of particles which interact by means of a wave field
In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun.
Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied
the joint dynamics of a classical point particle and a wave type generalization
of the Newtonian gravity potential, coupled in a regularized way. In the
present paper the many-body dynamics of this model is studied. The Vlasov
continuum limit is obtained in form equivalent to a weak law of large numbers.
We also establish a central limit theorem for the fluctuations around this
limit.Comment: 68 pages. Smaller corrections: two inequalities in sections 3 and two
inequalities in section 4, and definition of a Banach space in appendix A1.
Presentation of LLN and CLT in section 4.3 improved. Notation improve
Decay and Continuity of Boltzmann Equation in Bounded Domains
Boundaries occur naturally in kinetic equations and boundary effects are
crucial for dynamics of dilute gases governed by the Boltzmann equation. We
develop a mathematical theory to study the time decay and continuity of
Boltzmann solutions for four basic types of boundary conditions: inflow,
bounce-back reflection, specular reflection, and diffuse reflection. We
establish exponential decay in norm for hard potentials for
general classes of smooth domains near an absolute Maxwellian. Moreover, in
convex domains, we also establish continuity for these Boltzmann solutions away
from the grazing set of the velocity at the boundary. Our contribution is based
on a new decay theory and its interplay with delicate
decay analysis for the linearized Boltzmann equation, in the presence of many
repeated interactions with the boundary.Comment: 89 pages
Small BGK waves and nonlinear Landau damping
Consider 1D Vlasov-poisson system with a fixed ion background and periodic
condition on the space variable. First, we show that for general homogeneous
equilibria, within any small neighborhood in the Sobolev space W^{s,p}
(p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial
travelling wave solutions (BGK waves) with arbitrary minimal period and
traveling speed. This implies that nonlinear Landau damping is not true in
W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period.
Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long
time dynamics is very rich, including travelling BGK waves, unstable
homogeneous states and their possible invariant manifolds. Second, it is shown
that for homogeneous equilibria satisfying Penrose's linear stability
condition, there exist no nontrivial travelling BGK waves and unstable
homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore,
when p=2,we prove that there exist no nontrivial invariant structures in the
H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results
suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in
the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be
relatively simple. We also demonstrate that linear damping holds for initial
perturbations in very rough spaces, for linearly stable homogeneous state. This
suggests that the contrasting dynamics in W^{s,p} spaces with the critical
power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to
the linear level
Global existence of classical solutions to the Vlasov-Poisson system in a three dimensional, cosmological setting
The initial value problem for the Vlasov-Poisson system is by now well
understood in the case of an isolated system where, by definition, the
distribution function of the particles as well as the gravitational potential
vanish at spatial infinity. Here we start with homogeneous solutions, which
have a spatially constant, non-zero mass density and which describe the mass
distribution in a Newtonian model of the universe. These homogeneous states can
be constructed explicitly, and we consider deviations from such homogeneous
states, which then satisfy a modified version of the Vlasov-Poisson system. We
prove global existence and uniqueness of classical solutions to the
corresponding initial value problem for initial data which represent spatially
periodic deviations from homogeneous states.Comment: 23 pages, Latex, report #
- …