138 research outputs found
Modeling plan-form deltaic response to changes in fluvial sediment supply
This study focuses on the effects of changes in fluvial sediment supply on the plan-form shape of wave-dominated deltas. We apply a one-line numerical shoreline model to calculate shoreline evolution after (I) elimination and (II) time-periodic variation of fluvial input. Model results suggest four characteristic modes of wave-dominated delta development after abandonment. The abandonment mode is determined by the pre-abandonment downdrift shoreline characteristics and wave climate (which are, in turn, determined by previous delta evolution). For asymmetrical deltas experiencing shoreline instability on the downdrift flank, time-periodic variation in fluvial input influences the evolution of downdrift-migrating sandwaves. The frequency and magnitude of the riverine "forcing" can initiate a pattern that migrates away from the river mouth, interacting with the development of shoreline sandwaves. Model results suggest that long-period signals in fluvial delivery can be shredded by autogenic sand waves, whereas shorter-term riverine fluctuations can dominate the signal of the autogenic sandwaves. The insights provided by these exploratory numerical experiments provide a set of hypotheses that can be further tested using natural examples
A new neolepadid cirripede from a Pleistocene cold seep, Krishna-Godavari Basin, offshore India
Valves of a thoracican cirripede belonging to a new species of the Neolepadidae, Ashinkailepas indica Gale sp. nov. are described from a Late Pleistocene cold seep (52.6 ka), cored in the Krishna-Godavari Basin, offshore from the eastern coast of India. This constitutes the first fossil record of the genus, and its first occurrence in the Indian Ocean. Other fossil records of the Neolepadidae (here elevated to full family status) are discussed, and it is concluded that only Stipilepas molerensis from the Eocene of Denmark, is correctly referred to the family. Cladistic analysis of the Neolepadidae supports a basal position for Ashinkailepas, as deduced independently from molecular studies, and the Lower Cretaceous brachylepadid genus Pedupycnolepas is identified as sister taxon to Neolepadidae. Neolepadids are not Mesozoic relics as claimed, preserved in association with the highly specialised environments of cold seeps and hydrothermal vents, but are rather an early Cenozoic offshoot from the clade which also gave rise to the sessile cirripedes
Tracing the Vedic Saraswati River in the Great Rann of Kachchh
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 5476, doi:10.1038/s41598-017-05745-8.The lost Saraswati River mentioned in the ancient Indian tradition is postulated to have flown independently of the Indus River into the Arabian Sea, perhaps along courses of now defunct rivers such as Ghaggar, Hakra and Nara. The persistence of such a river during the Harappan Bronze Age and the Iron Age Vedic period is strongly debated. We drilled in the Great Rann of Kachchh (Kutch), an infilled gulf of the Arabian Sea, which must have received input from the Saraswati, if active. Nd and Sr isotopic measurements suggest that a distinct source may have been present before 10 ka. Later in Holocene, under a drying climate, sediments from the Thar Desert probably choked the signature of an independent Saraswati-like river. Alternatively, without excluding a Saraswati-like secondary source, the Indus and the Thar were the dominant sources throughout the post-glacial history of the GRK. Indus-derived sediment accelerated the infilling of GRK after ~6 ka when the Indus delta started to grow. Until its complete infilling few centuries ago, freshwater input from the Indus, and perhaps from the Ghaggar-Hakra-Nara, probably sustained a productive marine environment as well as navigability toward old coastal Harappan and historic towns in the region.The drilling effort and subsequent study of the cores was funded by Department of Science and Technology (DST), Government of India sponsored research project to DMM (Project No. SR/S4/ES-21/Kachchh Window/P1) under the science of Shallow Subsurface Programme (SSS). N. Khonde gratefully acknowledges Indo-US Post-doctoral Fellowship sponsored by SERB-IUSSTF for research work at Woods Hole Oceanographic Institution
What can we learn from X‐ray fluorescence core scanning data? A paleo‐monsoon case study
X‐ray fluorescence (XRF) core scanning of marine and lake sediments has been extensively used to study changes in past environmental and climatic processes over a range of timescales. The interpretation of XRF‐derived element ratios in paleoclimatic and paleoceanographic studies primarily considers differences in the relative abundances of particular elements. Here we present new XRF core scanning data from two long sediment cores in the Andaman Sea in the northern Indian Ocean and show that sea level related processes influence terrigenous inputs based proxies such as Ti/Ca, Fe/Ca, and elemental concentrations of the transition metals (e.g. Mn). Zr/Rb ratios are mainly a function of changes in median grain size of lithogenic particles and often covary with changes in Ca concentrations that reflect changes in biogenic calcium carbonate production. This suggests that a common process (i.e. sea level) influences both records. The interpretation of lighter element data (e.g. Si and Al) based on low XRF counts is complicated as variations in mean grain size and water content result in systematic artifacts and signal intensities not related to the Al or Si content of the sediments. This highlights the need for calibration of XRF core scanning data based on discrete sample analyses and careful examination of sediment properties such as porosity/water content for reliably disentangling environmental signals from other physical properties. In the case of the Andaman Sea, reliable extraction of a monsoon signal will require accounting for the sea level influence on the XRF data
Southern Hemisphere forcing of South Asian monsoon precipitation over the past ~1 million years
The orbital-scale timing of South Asian monsoon (SAM) precipitation is poorly understood. Here we present new SST and seawater δ18O (δ18Osw) records from the Bay of Bengal, the core convective region of the South Asian monsoon, over the past 1 million years. Our records reveal that SAM precipitation peaked in the precession band ~9 kyrs after Northern Hemisphere summer insolation maxima, in phase with records of SAM winds in the Arabian Sea and eastern Indian Ocean. Precession-band variance, however, accounts for ~30% of the total variance of SAM precipitation while it was either absent or dominant in records of the East Asian monsoon (EAM). This and the observation that SAM precipitation was phase locked with obliquity minima and was sensitive to Southern Hemisphere warming provides clear evidence that SAM and EAM precipitation responded differently to orbital forcing and highlights the importance of internal processes forcing monsoon variability
Recommended from our members
Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling
A period of cooling about 13,000 years ago interrupted about 2,000 years of deglacial warming. Known as the Younger Dryas (YD), the event is thought to have resulted from a slowdown of the Atlantic meridional overturning circulation in response to a sudden flood of Laurentide Ice Sheet meltwater that reached the Nordic Seas. Oxygen isotope evidence for a local source of meltwater to the open western North Atlantic from the Gulf of St Lawrence has been lacking. Here we report that the eastern Beaufort Sea contains the long-sought signal of O-18-depleted water. Beginning at similar to 12.94 +/- 0.15 thousand years ago, oxygen isotopes in the planktonic foraminifera from two sediment cores as well as sediment and seismic data indicate a flood of meltwater, ice and sediment to the Arctic via the Mackenzie River that lasted about 700 years. The minimum in the oxygen isotope ratios lasted similar to 130 years. We suggest that the floodwater travelled north along the Canadian Archipelago and then through the Fram Strait to the Nordic Seas, where freshening and freezing near sites of deep-water formation would have suppressed convection and caused the YD cooling by reducing the meridional overturning
No modern Irrawaddy River until the late Miocene-Pliocene
The deposits of large Asian rivers with unique drainage geometries have attracted considerable attention due to their explanatory power concerning tectonism, surface uplift and upstream drainage evolution. This study presents the first petrographic, heavy mineral, Nd and Sr isotope geochemistry, and detrital zircon geochronology results from the Holocene Irrawaddy megadelta alongside modern and ancient sedimentary provenance datasets to assess the late Neogene evolution of the Irrawaddy River. Contrary to models advocating a steady post-middle Miocene river, we reveal an evolution of the Irrawaddy River more compatible with regional evidence for kinematic reorganization in Myanmar during late-stage India-Asia collision. Quaternary sediments are remarkably consistent in terms of provenance but highlight significant decoupling amongst fine and coarse fraction 87Sr/86Sr and εNd due to hydraulic sorting. Only well after the late Miocene do petrographic, heavy mineral, isotope geochemistry, and detrital zircon U–Pb results from the trunk Irrawaddy and its tributaries achieve modern-day signatures. The primary driver giving rise to the geometry and provenance signature of the modern Irrawaddy River was regional late Miocene (≤10 Ma) basin inversion coupled with uplift and cumulative displacement along the Sagaing Fault. Middle to late Miocene provenance signatures cannot be reconciled with modern river geometries, and thus require significant loss of headwaters feeding the Chindwin subbasin after ∼14 Ma and the northern Shwebo subbasin after ∼11 Ma. Large-scale reworking after ∼7 Ma is evidenced by modern Irrawaddy River provenance, by entrenchment of the nascent drainage through Plio-Pleistocene inversion structures, and in the transfer of significant sediment volumes to the Andaman Sea
U-Pb detrital zircon geochronology of the lower Danube and its tributaries; implications for the geology of the Carpathians
We performed a detrital zircon (DZ) U-Pb geochronologic survey of the lower parts of the Danube River approaching its Danube Delta- Black Sea sink, and a few large tributaries (Tisza, Jiu, Olt and Siret) originating in the nearby Carpathian Mountains. Samples are modern sediments. DZ age spectra reflect the geology and specifically the crustal age formation of the source area, which in this case is primarily the Romanian Carpathians and their foreland with contributions from the Balkan Mountains to the south of Danube and the East European Craton.
The zircon cargo of these rivers suggests a source area that formed during the latest Proterozoic and mostly into the Cambrian and Ordovician as island arcs and backarc basins in a Peri-Gondwanan subduction setting (~600 -440 Ma). The Inner Carpathian units are dominated by a U-Pb DZ peak in the Ordovician (460-470 Ma) and little inheritance from the nearby continental masses, whereas the Outer Carpathian units and the foreland has two main peaks, one Ediacaran (570-610 Ma) and one in the earliest Permian (290-300 Ma), corresponding to granitic rocks known regionally. A prominent igneous Variscan peak (320-350 Ma) in the Danube’s and tributaries DZ zircon record is difficult to explain and points out to either an extra Carpathian source or major unknown gaps in our understanding of Carpathian geology. Younger peaks corresponding to arc magmatism during the Alpine period make up as much as about 10% of the DZ archive, consistent with the magnitude and surface exposure of Mesozoic and Cenozoic arcs
- …