36 research outputs found
Defending Our Public Biological Databases as a Global Critical Infrastructure
Progress in modern biology is being driven, in part, by the large amounts of freely available data in public resources such as the International Nucleotide Sequence Database Collaboration (INSDC), the world's primary database of biological sequence (and related) information. INSDC and similar databases have dramatically increased the pace of fundamental biological discovery and enabled a host of innovative therapeutic, diagnostic, and forensic applications. However, as high-value, openly shared resources with a high degree of assumed trust, these repositories share compelling similarities to the early days of the Internet. Consequently, as public biological databases continue to increase in size and importance, we expect that they will face the same threats as undefended cyberspace. There is a unique opportunity, before a significant breach and loss of trust occurs, to ensure they evolve with quality and security as a design philosophy rather than costly “retrofitted” mitigations. This Perspective surveys some potential quality assurance and security weaknesses in existing open genomic and proteomic repositories, describes methods to mitigate the likelihood of both intentional and unintentional errors, and offers recommendations for risk mitigation based on lessons learned from cybersecurity
Phenotypic and genotypic analyses to guide selection of reverse transcriptase inhibitors in second-line HIV therapy following extended virological failure in Uganda
Objectives
We investigated phenotypic and genotypic resistance after 2 years of first-line therapy with two HIV treatment regimens in the absence of virological monitoring.
Methods
NORA [Nevirapine OR Abacavir study, a sub-study of the Development of AntiRetroviral Therapy in Africa (DART) trial] randomized 600 symptomatic HIV-infected Ugandan adults (CD4 cell count <200 cells/mm3) to receive zidovudine/lamivudine plus abacavir (cABC arm) or nevirapine (cNVP arm). All virological tests were performed retrospectively, including resistance tests on week 96 plasma samples with HIV RNA levels ≥1000 copies/mL. Phenotypic resistance was expressed as fold-change in IC50 (FC) relative to wild-type virus.
Results
HIV-1 RNA viral load ≥1000 copies/mL at week 96 was seen in 58/204 (28.4%) cABC participants and 21/159 (13.2%) cNVP participants. Resistance results were available in 35 cABC and 17 cNVP participants; 31 (89%) cABC and 16 (94%) cNVP isolates had a week 96 FC below the biological cut-off for tenofovir (2.2). In the cNVP arm, 16/17 participants had resistance mutations synonymous with high-level resistance to nevirapine and efavirenz; FC values for etravirine were above the biological cut-off in 9 (53%) isolates. In multivariate regression models, K65R, Y115F and the presence of thymidine analogue-associated mutations were associated with increased susceptibility to etravirine in the cABC arm.
Conclusions
Our data support the use of tenofovir following failure of a first-line zidovudine-containing regimen and shed further light on non-nucleoside reverse transcriptase inhibitor hypersusceptibility
