67 research outputs found

    Statics and dynamics of charge fluctuations in the t-J model

    Full text link
    The equation for the charge vertex γ\gamma of the t−Jt-J model is derived and solved in leading order of an 1/N expansion, working directly in terms of Hubbard operators. Various quantities which depend crucially on γ\gamma are then calculated, such as the life time and the transport life time of electrons due to a charge coupling to other degrees of freedom and the charge-charge correlation function. Our results show that the static screening of charges and the dynamics of charge fluctuations depend only weakly on JJ and are mainly determined by the constraint of having no double occupancies of sites.Comment: 10 latex pages, 4 figures as post-script file

    Spin interference in silicon three-terminal one-dimensional rings

    Full text link
    We present the first findings of the spin transistor effect in the Rashba gate-controlled ring embedded in the p-type self-assembled silicon quantum well that is prepared on the n-type Si (100) surface. The coherence and phase sensitivity of the spin-dependent transport of holes are studied by varying the value of the external magnetic field and the bias voltage that are applied perpendicularly to the plane of the double-slit ring. Firstly, the amplitude and phase sensitivity of the 0.7(2e^2/h) feature of the hole quantum conductance staircase revealed by the quantum point contact inserted in the one of the arms of the double-slit ring are found to result from the interplay of the spontaneous spin polarization and the Rashba spin-orbit interaction. Secondly, the quantum scatterers connected to two one-dimensional leads and the quantum point contact inserted are shown to define the amplitude and the phase of the Aharonov-Bohm and the Aharonov-Casher conductance oscillations.Comment: 8 pages, 5 figure

    Phase diagram of a Bose gas near a wide Feshbach resonance

    Full text link
    In this paper, we study the phase diagram of a homogeneous Bose gas with a repulsive interaction near a wide Feshbach resonance at zero temperature. The Bose-Einstein-condensation (BEC) state of atoms is a metastable state. When the scattering length aa exceeds a critical value depending on the atom density nn, na3>0.035na^3>0.035, the molecular excitation energy is imaginary and the atomic BEC state is dynamically unstable against molecule formation. The BEC state of diatomic molecules has lower energy, where the atomic excitation is gapped and the molecular excitation is gapless. However when the scattering length is above another critical value, na3>0.0164na^3>0.0164, the molecular BEC state becomes a unstable coherent mixture of atoms and molecules. In both BEC states, the binding energy of diatomic molecules is reduced due to the many-body effect.Comment: 5 pages, 4 figure

    Large-N expansion based on the Hubbard-operator path integral representation and its application to the t−Jt-J model

    Full text link
    In the present work we have developed a large-N expansion for the t−Jt-J model based on the path integral formulation for Hubbard-operators. Our large-N expansion formulation contains diagrammatic rules, in which the propagators and vertex are written in term of Hubbard operators. Using our large-N formulation we have calculated, for J=0, the renormalized O(1/N)O(1/N) boson propagator. We also have calculated the spin-spin and charge-charge correlation functions to leading order 1/N. We have compared our diagram technique and results with the existing ones in the literature.Comment: 6 pages, 3 figures, Phys.Rev.B (in press

    Theory of the density fluctuation spectrum of strongly correlated electrons

    Full text link
    The density response function N(q,ω)N(q,\omega) of the two-dimensional t−Jt-J model is studied starting from a mixed gauge formulation of the slave boson approach. Our results for N(q,ω)N(q, \omega) are in remarkable agreement with exact diagonalization studies, and provide a natural explanation of the anomalous features in the density response in terms of the spin polaron nature of the charge carriers. In particular we have identified unexplained low energy structures in the diagonalization data as arising from the coherent polaron motion of holes in a spin liquid.Comment: 4 pages with 4 figures, to be published in Physical Review B (RC

    Low-energy renormalization of the electron dispersion of high-Tc_c superconductors

    Full text link
    High-resolution ARPES studies in cuprates have detected low-energy changes in the dispersion and absorption of quasi-particles at low temperatures, in particular, in the superconducting state. Based on a new 1/N expansion of the t-J-Holstein model, which includes collective antiferromagnetic fluctuations already in leading order, we argue that the observed low-energy structures are mainly caused by phonons and not by spin fluctuations, at least, in the optimal and overdoped regime.Comment: 6 pages, 3 figure

    Influence of spin fluctuations on the superconducting transition temperature and resistivity in the t-J model at large N

    Full text link
    Spin fluctuations enter the calculation of the superconducting transition temperature Tc_c only in the next-to-leading order (i.e., in O(1/N2^2) of the 1/N expansion of the t-J model. We have calculated these terms and show that they have only little influence on the value of Tc_c obtained in the leading order O(1/N) in the optimal and overdoped region, i.e., for dopings larger than the instability towards a flux phase. This result disagrees with recent spin-fluctuation mediated pairing theories. The discrepancies can be traced back to the fact that in our case the coupling between electrons and spins is determined by the t-J model and not adjusted and that the spin susceptibility is rather broad and structureless and not strongly peaked at low energies as in spin-fluctuation models. Relating Tc_c and transport we show that the effective interactions in the particle-particle and particle-hole channels are not simply related within the 1/N expansion by different Fermi surface averages of the same interactin as in the case of phonons or spin fluctuations. As a result, we find that large values for Tc_c and rather small scattering rates in the normal state as found in the experiments can easily be reconciled with each other. We also show that correlation effects heavily suppress transport relaxation rates relative to quasiparticle relaxation rates in the case of phonons but not in the case of spin fluctuations.Comment: 16 pages, 10 figures, will appear in Phys. Rev.
    • …
    corecore