10 research outputs found
Entanglement entropy of two disjoint intervals separated by one spin in a chain of free fermion
We calculate the entanglement entropy of a non-contiguous subsystem of a chain of free fermions. The starting point is a formula suggested by Jin and Korepin, \texttt{arXiv:1104.1004}, for the reduced density of states of two disjoint intervals with lattice sites , which applies to this model. As a first step in the asymptotic analysis of this system, we consider its simplification to two disjoint intervals separated just by one site, and we rigorously calculate the mutual information between these two blocks and the rest of the chain. In order to compute the entropy we need to study the asymptotic behaviour of an inverse Toeplitz matrix with Fisher-Hartwig symbol using the the Riemann--Hilbert method
Maps on positive definite operators preserving the quantum χ2α-divergence
We describe the structure of all bijective maps on the cone of positive definite operators acting on a finite and at least two-dimensional complex Hilbert space which preserve the quantum χ2αχα2 -divergence for some α∈[0,1]α∈[0,1] . We prove that any such transformation is necessarily implemented by either a unitary or an antiunitary operator. Similar results concerning maps on the cone of positive semidefinite operators as well as on the set of all density operators are also derived
Combinatorial distance geometry in normed spaces
We survey problems and results from combinatorial geometry in normed spaces, concentrating on problems that involve distances. These include various properties of unit-distance graphs, minimum-distance graphs, diameter graphs, as well as minimum spanning trees and Steiner minimum trees. In particular, we discuss translative kissing (or Hadwiger) numbers, equilateral sets, and the Borsuk problem in normed spaces. We show how to use the angular measure of Peter Brass to prove various statements about Hadwiger and blocking numbers of convex bodies in the plane, including some new results. We also include some new results on thin cones and their application to distinct distances and other combinatorial problems for normed spaces