29 research outputs found

    The approach to a superconductor-to-Bose-insulator transition in disordered films

    Full text link
    Through a detailed study of scaling near the magnetic field-tuned superconductor-to-insulator transition in strongly disordered films, we find that results for a variety of materials can be collapsed onto a single phase diagram. The data display two clear branches, one with weak disorder and an intervening metallic phase, the other with strong disorder. Along the strongly disordered branch, the resistance at the critical point approaches RQ=h/4e2R_Q = h/4e^2 and the scaling of the resistance is consistent with quantum percolation, and therefore with the predictions of the dirty boson model.Comment: 4 pages, 4 figure

    Origin of Orthorhombic Transition, Magnetic Transition, and Shear Modulus Softening in Iron Pnictide Superconductors: Analysis based on the Orbital Fluctuation Theory

    Full text link
    The main features in iron-pnictide superconductors are summarized as (i) the orthorhombic transition accompanied by remarkable softening of shear modulus, (ii) high-Tc superconductivity close to the orthorhombic phase, and (iii) stripe-type magnetic order induced by orthorhombicity. To present a unified explanation for them, we analyze the multiorbital Hubbard-Holstein model with Fe-ion optical phonons based on the orbital fluctuation theory. In the random-phase-approximation (RPA), a small electron-phonon coupling constant (λ 0.2\lambda ~ 0.2) is enough to produce large orbital (=charge quadrupole) fluctuations. The most divergent susceptibility is the OxzO_{xz}-antiferro-quadrupole (AFQ) susceptibility, which causes the s-wave superconductivity without sign reversal (s_{++}-wave state). At the same time, divergent development of Ox2y2O_{x2-y2}-ferro-quadrupole (FQ) susceptibility is brought by the "two-orbiton process" with respect to the AFQ fluctuations, which is absent in the RPA. The derived FQ fluctuations cause the softening of C66C_{66} shear modulus, and its long-range-order not only triggers the orthorhombic structure transition, but also induces the instability of stripe-type antiferro-magnetic state. In other words, the condensation of composite bosons made of two orbitons gives rise to the FQ order and structure transition. The theoretically predicted multi-orbital-criticality presents a unified explanation for abovementioned features of iron pnictide superconductors.Comment: 19 pages, 15 figure

    Dynamic fluctuations in the superconductivity of NbN films from microwave conductivity measurements

    Full text link
    We have measured the frequency and temperature dependences of complex ac conductivity, \sigma(\omega)=\sigma_1(\omega)-i\sigma_2(\omega), of NbN films in zero magnetic field between 0.1 to 10 GHz using a microwave broadband technique. In the vicinity of superconducting critical temperature, Tc, both \sigma_1(\omega) and \sigma_2(\omega) showed a rapid increase in the low frequency limit owing to the fluctuation effect of superconductivity. For the films thinner than 300 nm, frequency and temperature dependences of fluctuation conductivity, \sigma(\omega,T), were successfully scaled onto one scaling function, which was consistent with the Aslamazov and Larkin model for two dimensional (2D) cases. For thicker films, \sigma(\omega,T) data could not be scaled, but indicated that the dimensional crossover from three dimensions (3D) to 2D occurred as the temperature approached Tc from above. This provides a good reference of ac fluctuation conductivity for more exotic superconductors of current interest.Comment: 8 pages, 7 Figures, 1 Table, Accepted for publication in PR

    Magnetic Flux Periodic Response of Nano-perforated Ultrathin Superconducting Films

    Full text link
    We have patterned a hexagonal array of nano-scale holes into a series of ultrathin, superconducting Bi/Sb films with transition temperatures 2.65 K <Tco<<T_{co} < 5 K. These regular perforations give the films a phase-sensitive periodic response to an applied magnetic field. By measuring this response in their resistive transitions, R(T)R(T), we are able to distinguish regimes in which fluctuations of the amplitude, both the amplitude and phase, and the phase of the superconducting order parameter dominate the transport. The portion of R(T)R(T) dominated by amplitude fluctuations is larger in lower TcoT_{co} films and thus, grows with proximity to the superconductor to insulator transition.Comment: Revised title, abstract, text, figure

    Landau diamagnetism and magnetization of interacting diffusive conductors

    Full text link
    We show how the orbital magnetization of an interacting disordered diffusive electron gas can be simply related to the magnetization of the non-interacting system having the same geometry. This result is applied to the persistent current of a mesoscopic ring and to the relation between Landau diamagnetism and the interaction correction to the magnetization of diffusive systems. The field dependence of this interaction contribution can be deduced directly from the de Haas-van Alphen oscillations of the free electron gas. Known results for the free orbital magnetism of finite systems can be used to derive the interaction contribution in the diffusive regime in various geometries.Comment: 4 pages, 2 figure

    Resistivity study of the pseudogap phase for (Hg,Re) - 1223 superconductors

    Full text link
    The pseudogap phase above the critical temperature of high TcT_{c} superconductors (HTSC) presents different energy scales and it is currently a matter of intense study. The complexity of the HTSC normal state requires very accurate measurements with the purpose of distinguishing different types of phenomena. Here we have performed systematically studies through electrical resistivity (ρ\rho) measurements by several different current densities in order to obtain an optimal current for each sample. This approach allows to determine reliable values of the pseudogap temperature T(n)T^{*}(n), the layer coupling temperature between the superconductor layers TLD(n)T_{LD}(n), the fluctuation temperature Tscf(n)T_{scf}(n) and the critical temperature Tc(n)T_{c}(n) as function of the doping nn. The interpretation of these different temperature scales allows to characterize possible scenarios for the (Hg,Re) - 1223 normal state. This method, described in detail here, and used to derive the (Hg,Re)-1223 phase diagram is general and can be applied to any HTSC.Comment: 31 pages, 12 figures, Latex; 25 pages, LaTeX; 11 figures; rewrited section II and III; added 18 reference; rewrited title, added discussion sectio

    Fluctuation Conductivity in Unconventional Superconductors near Critical Disorder

    Full text link
    The fluctuation conductivity σs\sigma_{\rm s} in bulk superconductors with non s-wave pairing and with nonmagnetic disorder of strength DD is studied at low TT and within the Gaussian approximation. It is shown by assuming a quasi two-dimensional (2D) electronic state that, only if the gap function d_\mu({\p}) is, as in a 2D p-wave pairing state, linear in the in-plane (relative) momentum {\p}_\perp, the in-plane fluctuation conductivity on the line D=DcD=D_c is weakly divergent in low TT limit. The present result may be useful in clarifying the true gap function of spin-triplet Sr2RuO4{\rm Sr_2RuO_4} through resistivity measurements.Comment: 8 pages, 1 figure, to be published in J. Phys. Soc. Jpn. 70, No.10 (2001

    Coulomb drag as a signature of the paired quantum Hall state

    Full text link
    Motivated by the recent Coulomb drag experiment of M. P. Lilly et. al, we study the Coulomb drag in a two-layer system with Landau level filling factor ν=1/2\nu=1/2. We find that the drag conductivity in the incompressible paired quantum Hall state at zero temperature can be finite. The drag conductivity is also greatly enhanced above TcT_c, at which the transition between the weakly coupled compressible liquids and the paired quantum Hall liquid takes place. We discuss the implications of our results for the recent experiment.Comment: 4 pages, 1 figure included, replaced by the published versio

    Dynamical Induction of s-wave Component in d-wave Superconductor Driven by Thermal Fluctuations

    Full text link
    We investigated the mutual induction effects between the d-wave and the s-wave components of order parameters due to superconducting fluctuation above the critical temperatures and calculated its contributions to paraconductivity and excess Hall conductivity based on the two-component stochastic TDGL equation. It is shown that the coupling of two components increases paraconductivity while it decreases excess Hall conductivity compared to the cases when each component fluctuates independently. We also found the singular behavior in the paraconductivity and the excess Hall conductivity dependence on the coupling parameter which is consistent with the natural restriction among the coefficients of gradient terms.Comment: 10 pages, 4 figures included, submitted to J.Phys.Soc.Jp

    On the superconductivity in the system with preformed pairs

    Full text link
    We discuss the phenomenology of the superconductivity resulting from the bose condensation of the preformed pairs coexisting with unpaired fermions. We show that this transition is more mean field like than usual bose condensation, i.e. it is characterized by a relatively small value of the Ginzburg parameter. We consider the Hall effect in the vortex flow regime and in the fluctuational regime above TcT_c and show that in this situation it is much less than in the transition driven entirely by bose condesation but much larger than in a usual superconductivity. We analyse the available Hall data and conclude that this phenomenology describes reasonably well the data in the underdoped materials of YBaCuOYBaCuO family but is not an appropriate description of optimally doped materials or underdoped LaSrCuOLaSrCuO.Comment: Latex/Revtex file, 2 Postscript figures, 10 page
    corecore