1,034 research outputs found

    Dynamic heterogeneity in amorphous materials

    Full text link
    Amorphous solids are mechanically rigid while possessing a disordered structure similar to that of dense liquids. Recent research indicates that dynamical heterogeneity, spatio-temporal fluctuations in local dynamical behavior, might help understanding the statistical mechanics of glassy states.Comment: 7 pages; 5 figures -- "Trends" article published by Physics at http://physics.aps.org/articles/v4/4

    Mode Coupling relaxation scenario in a confined glass former

    Full text link
    Molecular dynamics simulations of a Lennard-Jones binary mixture confined in a disordered array of soft spheres are presented. The single particle dynamical behavior of the glass former is examined upon supercooling. Predictions of mode coupling theory are satisfied by the confined liquid. Estimates of the crossover temperature are obtained by power law fit to the diffusion coefficients and relaxation times of the late α\alpha region. The bb exponent of the von Schweidler law is also evaluated. Similarly to the bulk, different values of the exponent γ\gamma are extracted from the power law fit to the diffusion coefficients and relaxation times.Comment: 5 pages, 4 figures, changes in the text, accepted for publication on Europhysics Letter

    Critical Decay at Higher-Order Glass-Transition Singularities

    Full text link
    Within the mode-coupling theory for the evolution of structural relaxation in glass-forming systems, it is shown that the correlation functions for density fluctuations for states at A_3- and A_4-glass-transition singularities can be presented as an asymptotic series in increasing inverse powers of the logarithm of the time t: ϕ(t)figi(x)\phi(t)-f\propto \sum_i g_i(x), where gn(x)=pn(lnx)/xng_n(x)=p_n(\ln x)/x^n with p_n denoting some polynomial and x=ln (t/t_0). The results are demonstrated for schematic models describing the system by solely one or two correlators and also for a colloid model with a square-well-interaction potential.Comment: 26 pages, 7 figures, Proceedings of "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina, Italy, December 2003 (submitted

    Structural Relaxation and Mode Coupling in a Simple Liquid: Depolarized Light Scattering in Benzene

    Full text link
    We have measured depolarized light scattering in liquid benzene over the whole accessible temperature range and over four decades in frequency. Between 40 and 180 GHz we find a susceptibility peak due to structural relaxation. This peak shows stretching and time-temperature scaling as known from α\alpha relaxation in glass-forming materials. A simple mode-coupling model provides consistent fits of the entire data set. We conclude that structural relaxation in simple liquids and α\alpha relaxation in glass-forming materials are physically the same. A deeper understanding of simple liquids is reached by applying concepts that were originally developed in the context of glass-transition research.Comment: submitted to New J. Phy

    Universal and non-universal features of glassy relaxation in propylene carbonate

    Full text link
    It is demonstrated that the susceptibility spectra of supercooled propylene carbonate as measured by depolarized-light-scattering, dielectric-loss, and incoherent quasi-elastic neutron-scattering spectroscopy within the GHz window are simultaneously described by the solutions of a two-component schematic model of the mode-coupling theory (MCT) for the evolution of glassy dynamics. It is shown that the universal beta-relaxation-scaling laws, dealing with the asymptotic behavior of the MCT solutions, describe the qualitative features of the calculated spectra. But the non-universal corrections to the scaling laws render it impossible to achieve a complete quantitative description using only the leading-order-asymptotic results.Comment: 37 pages, 16 figures, to be published in Phys. Rev.

    Reentrant glass transition in a colloid-polymer mixture with depletion attractions

    Full text link
    Performing light scattering experiments we show that introducing short-ranged attraction to a colloidal suspension of nearly hard spheres by addition of free polymer produces new glass transition phenomena. We observe a dramatic acceleration of the density fluctuations amounting to the melting of a colloidal glass. Increasing the strength of the attractions the system freezes into another nonergodic state sharing some qualitative features with gel states occurring at lower colloid packing fractions. This reentrant glass transition is in qualitative agreement with recent theoretical predictions.Comment: 14 pages, 3 figure

    Colloidal gelation and non-ergodicity transitions

    Full text link
    Within the framework of the mode coupling theory (MCT) of structural relaxation, mechanisms and properties of non-ergodicity transitions in rather dilute suspensions of colloidal particles characterized by strong short-ranged attractions are studied. Results building on the virial expansion for particles with hard cores and interacting via an attractive square well potential are presented, and their relevance to colloidal gelation is discussed.Comment: 10 pages, 4 figures; Talk at the Conference: "Unifying Concepts in Glass Physics" ICTP Trieste, September 1999; to be published in J. Phys.: Condens. Matte

    Dynamics in Colloidal Liquids near a Crossing of Glass- and Gel-Transition Lines

    Full text link
    Within the mode-coupling theory for ideal glass-transitions, the mean-squared displacement and the correlation function for density fluctuations are evaluated for a colloidal liquid of particles interacting with a square-well potential for states near the crossing of the line for transitions to a gel with the line for transitions to a glass. It is demonstrated how the dynamics is ruled by the interplay of the mechanisms of arrest due to hard-core repulsion and due to attraction-induced bond formation as well as by a nearby higher-order glass-transition singularity. Application of the universal relaxation laws for the slow dynamics near glass-transition singularities explains the qualitative features of the calculated time dependence of the mean-squared displacement, which are in accord with the findings obtained in molecular-dynamics simulation studies by Zaccarelli et. al [Phys. Rev. E 66, 041402 (2002)]. Correlation functions found by photon-correlation spectroscopy in a micellar system by Mallamace et. al [Phys. Rev. Lett. 84, 5431 2000)] can be interpreted qualitatively as a crossover from gel to glass dynamics.Comment: 13 pages, 12 figure

    Gaussian density fluctuations, mode coupling theory, and all that

    Full text link
    We consider a toy model for glassy dynamics of colloidal suspensions: a single Brownian particle diffusing among immobile obstacles. If Gaussian factorization of static density fluctuations is assumed, this model can be solved without factorization approximation for any dynamic correlation function. The solution differs from that obtained from the ideal mode coupling theory (MCT). The latter is equivalent to including only some, positive definite terms in an expression for the memory function. An approximate re-summation of the complete expression suggests that, under the assumption of Gaussian factorization of static fluctuations, mobile particle's motion is always diffusive. In contrast, MCT predicts that the mobile particle becomes localized at a high enough obstacle density. We discuss the implications of these results for models for glassy dynamics.Comment: to be published in Europhys. Let
    corecore