28 research outputs found

    Proton Wires in an Electric Field: the Impact of Grotthuss Mechanism on Charge Translocation

    Full text link
    We present the results of the modeling of proton translocation in finite H-bonded chains in the framework of two-stage proton transport model. We explore the influence of reorientation motion of protons, as well as the effect of electric field and proton correlations on system dynamics. An increase of the reorientation energy results in the transition of proton charge from the surrounding to the inner water molecules in the chain. Proton migration along the chain in an external electric field has a step-like character, proceeding with the occurrence of electric field threshold-type effects and drastic redistribution of proton charge. Electric field applied to correlated chains induces first a formation of ordered dipole structures for lower field strength, and than, with a further field strength increase, a stabilization of states with Bjerrum D-defects. We analyze the main factors responsible for the formation/annihilation of Bjerrum defects showing the strong influence of the complex interplay between reorientation energy, electric field and temperature in the dynamics of proton wire.Comment: 28 pages, 9 figure

    Strong-coupling approach for strongly correlated electron systems

    Full text link
    A perturbation theory scheme in terms of electron hopping, which is based on the Wick theorem for Hubbard operators, is developed. Diagrammatic series contain single-site vertices connected by hopping lines and it is shown that for each vertex the problem splits into the subspaces with ``vacuum states'' determined by the diagonal Hubbard operators and only excitations around these vacuum states are allowed. The rules to construct diagrams are proposed. In the limit of infinite spatial dimensions the total auxiliary single-site problem exactly splits into subspaces that allows to build an analytical thermodynamically consistent approach for a Hubbard model. Some analytical results are given for the simple approximations when the two-pole (alloy-analogy solution) and four-pole (Hartree-Fock approximation) structure for Green's function is obtained. Two poles describe contribution from the Fermi-liquid component, which is dominant for small electron and hole concentrations (``overdoped case'' of high-TcT_c's), whereas other two describe contribution from the non-Fermi liquid and are dominant close to half-filling (``underdoped case'').Comment: 14 pages, revtex, feynmf, 5 EPS figures, two-column PRB style, published in PR
    corecore