7,583 research outputs found

    The upper critical field and its anisotropy in LiFeAs

    Full text link
    The upper critical field μ0Hc2(Tc)\mu_0H_{c2}(T_c) of LiFeAs single crystals has been determined by measuring the electrical resistivity using the facilities of pulsed magnetic field at Los Alamos. We found that μ0Hc2(Tc)\mu_0H_{c2}(T_c) of LiFeAs shows a moderate anisotropy among the layered iron-based superconductors; its anisotropic parameter γ\gamma monotonically decreases with decreasing temperature and approaches γ≃1.5\gamma\simeq 1.5 as T→0T\rightarrow 0. The upper critical field reaches 15T (H∥cH\parallel c) and 24.2T (H∥abH\parallel ab) at T=T=1.4K, which value is much smaller than other iron-based high TcT_c superconductors. The temperature dependence of μ0Hc2(Tc)\mu_0H_{c2}(T_c) can be described by the Werthamer-Helfand-Hohenberg (WHH) method, showing orbitally and (likely) spin-paramagnetically limited upper critical field for H∥cH\parallel c and H∥abH\parallel ab, respectively.Comment: 5 pages,5 figure

    The magnetoresistance and Hall effect in CeFeAsO: a high magnetic field study

    Full text link
    The longitudinal electrical resistivity and the transverse Hall resistivity of CeFeAsO are simultaneously measured up to a magnetic field of 45T using the facilities of pulsed magnetic field at Los Alamos. Distinct behaviour is observed in both the magnetoresistance Rxx({\mu}0H) and the Hall resistance Rxy({\mu}0H) while crossing the structural phase transition at Ts \approx 150K. At temperatures above Ts, little magnetoresistance is observed and the Hall resistivity follows linear field dependence. Upon cooling down the system below Ts, large magnetoresistance develops and the Hall resistivity deviates from the linear field dependence. Furthermore, we found that the transition at Ts is extremely robust against the external magnetic field. We argue that the magnetic state in CeFeAsO is unlikely a conventional type of spin-density-wave (SDW).Comment: 4 pages, 3 figures SCES2010, To appear in J. Phys.: Conf. Ser. for SCES201

    Modeling Heterogeneous Materials via Two-Point Correlation Functions: II. Algorithmic Details and Applications

    Full text link
    In the first part of this series of two papers, we proposed a theoretical formalism that enables one to model and categorize heterogeneous materials (media) via two-point correlation functions S2 and introduced an efficient heterogeneous-medium (re)construction algorithm called the "lattice-point" algorithm. Here we discuss the algorithmic details of the lattice-point procedure and an algorithm modification using surface optimization to further speed up the (re)construction process. The importance of the error tolerance, which indicates to what accuracy the media are (re)constructed, is also emphasized and discussed. We apply the algorithm to generate three-dimensional digitized realizations of a Fontainebleau sandstone and a boron carbide/aluminum composite from the two- dimensional tomographic images of their slices through the materials. To ascertain whether the information contained in S2 is sufficient to capture the salient structural features, we compute the two-point cluster functions of the media, which are superior signatures of the micro-structure because they incorporate the connectedness information. We also study the reconstruction of a binary laser-speckle pattern in two dimensions, in which the algorithm fails to reproduce the pattern accurately. We conclude that in general reconstructions using S2 only work well for heterogeneous materials with single-scale structures. However, two-point information via S2 is not sufficient to accurately model multi-scale media. Moreover, we construct realizations of hypothetical materials with desired structural characteristics obtained by manipulating their two-point correlation functions.Comment: 35 pages, 19 figure

    Upper critical field and thermally activated flux flow in single crystalline Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2

    Full text link
    The upper critical field μ0Hc2(Tc)\mu_0H_{c2}(T_c) of Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2 single crystals has been determined by means of measuring the electrical resistivity in both a pulsed magnetic field (∼\sim60T) and a DC magnetic field (∼\sim14T). It is found that Hc2H_{c2} linearly increases with decreasing temperature for H\textbf{H}∥\parallelcc, reaching μ0Hc2H∥c(0K)≃60\mu_0H_{c2}^{\textbf{H}\parallel c}(0\textrm{K})\simeq60 T. On the other hand, a larger μ0Hc2(0K)\mu_0H_{c2}(0\textrm{K}) with a strong convex curvature is observed for H\textbf{H}⊥\perpcc (μ0Hc2H⊥c\mu_0H_{c2}^{\textbf{H}\perp c}(18K)≃\simeq60T). This compound shows a moderate anisotropy of the upper critical field around TcT_c, but decreases with decreasing temperature. Analysis of the upper critical field based on the Werthamer-Helfand-Hohenberg (WHH) method indicates that μ0Hc2(0K)\mu_0H_{c2}(0\textrm{K}) is orbitally limited for H\textbf{H}∥\parallelcc, but the effect of spin paramagnetism may play an important role on the pair breaking for H\textbf{H}⊥\perpcc. All these experimental observations remarkably resemble those of the iron pnictide superconductors, suggesting a unified scenario for the iron-based superconductors. Moreover, the superconducting transition is significantly broadened upon applying a magnetic field, indicating strong thermal fluctuation effects in the superconducting state of Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2. The derived thermal activation energy for vortex motion is compatible with those of the 1111-type iron pnictides.Comment: 7 pages, 6 figure
    • …
    corecore