2,924 research outputs found

    The eddy heat-flux in rotating turbulent convection

    Full text link
    The three components of the heat-flux vector F=ρCparenumericallycomputedforastratifiedrotatingturbulentconvectionusingtheNIRVANAcodeinaflatbox.ThelatitudinalcomponentF =\rho C_p are numerically computed for a stratified rotating turbulent convection using the NIRVANA code in a flat box. The latitudinal component F_\thetaprovestobenegative(positive)inthenorthern(southern)hemispheresothattheheatalwaysflowstowardsthepoles.Asasurprise,theradialheatflux proves to be negative (positive) in the northern (southern) hemisphere so that the heat always flows towards the poles. As a surprise, the radial heat-flux F_rpeaksattheequatorratherthanatthepoles(TaylornumbersO(106)).Thesamebehaviorisobservedfortheradialturbulenceintensity peaks at the equator rather than at the poles (Taylor numbers O(10^6)). The same behavior is observed for the radial turbulence intensity which for \emph{free} turbulence is also believed to peak at the poles (see Eq. (19) below). As we can show, however, the consequences of this unexpected result (also obtained by Kaepylae, Korpi and Tuominen 2004) for the theory of differential rotation are small as mainly the F_\thetaisresponsibletosolvetheTaylornumberpuzzle.Inalloursimulationstheazimuthalcomponent is responsible to solve the `Taylor number puzzle'. In all our simulations the azimuthal component F_\phiprovestobenegativesothattherotatingturbulenceproducesanwestwardsdirectedazimuthalheatfluxwhichshouldbeobservable.Fluctuationswithhighertemperatureareexpectedtobeanticorrelatedwiththeirownangularvelocityfluctuations.Wefindthisrotationinducedresultasunderstandableasthe proves to be negative so that the rotating turbulence produces an westwards directed azimuthal heat-flux which should be observable. Fluctuations with higher temperature are expected to be anticorrelated with their own angular velocity fluctuations. We find this rotation-induced result as understandable as the F_\phi$ is closely related to the radial \Lambda-effect which is known to be also negative in stratified and rapidly rotating convection zones.Comment: 8 pages, 9 figures, Astron. Astrophys. (subm.

    Application of infrared vision system for potato thermal control

    Get PDF
    The article proposes a solution to the problem of determining the values of potato tubers tissue thermophysical characteristics. The solution of this problem makes it possible to calculate the optimal regime parameters of potato quality active thermal control, which can be used for automatic sorting. In order to solve this problem, we propose a non-contact non-destructive control method based on a pulsed laser heating of a potato tuber flat surface area and subsequent use of time integral characteristics of temperature and heat flow, as well as a measuring device developed on the basis of physical and mathematical models of the method. The method was used by the authors to determine the thermal conductivity, heat capacity and coefficient of thermal diffusivity of different quality potato tissues: both healthy and affected by phyto-diseases. The studies have shown that the thermal conductivity of plant tissues depends on the presence of structural disturbances in them as a result of phyto-diseases. This fact confirms the possibility of using thermal non-destructive control of potatoes tissues provided the correct choice of power and the duration of the thermal effect on the object of control

    Sustainable seabed mining: guidelines and a new concept for Atlantis II Deep

    No full text
    The feasibility of exploiting seabed resources is subject to the engineering solutions, and economic prospects. Due to rising metal prices, predicted mineral scarcities and unequal allocations of resources in the world, vast research programmes on the exploration and exploitation of seabed minerals are presented in 1970s. Very few studies have been published after the 1980s, when predictions were not fulfilled. The attention grew back in the last decade with marine mineral mining being in research and commercial focus again and the first seabed mining license for massive sulphides being granted in Papua New Guinea’s Exclusive Economic Zone.Research on seabed exploitation and seabed mining is a complex transdisciplinary field that demands for further attention and development. Since the field links engineering, economics, environmental, legal and supply chain research, it demands for research from a systems point of view. This implies the application of a holistic sustainability framework of to analyse the feasibility of engineering systems. The research at hand aims to close this gap by developing such a framework and providing a review of seabed resources. Based on this review it identifies a significant potential for massive sulphides in inactive hydrothermal vents and sediments to solve global resource scarcities. The research aims to provide background on seabed exploitation and to apply a holistic systems engineering approach to develop general guidelines for sustainable seabed mining of polymetallic sulphides and a new concept and solutions for the Atlantis II Deep deposit in the Red Sea.The research methodology will start with acquiring a broader academic and industrial view on sustainable seabed mining through an online survey and expert interviews on seabed mining. In addition, the Nautilus Minerals case is reviewed for lessons learned and identification of challenges. Thereafter, a new concept for Atlantis II Deep is developed that based on a site specific assessment.The research undertaken in this study provides a new perspective regarding sustainable seabed mining. The main contributions of this research are the development of extensive guidelines for key issues in sustainable seabed mining as well as a new concept for seabed mining involving engineering systems, environmental risk mitigation, economic feasibility, logistics and legal aspects

    Compton scattering sequence reconstruction algorithm for the liquid xenon gamma-ray imaging telescope (LXeGRIT)

    Get PDF
    The Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT) is a balloon born experiment sensitive to \g -rays in the energy band of 0.2-20 MeV. The main detector is a time projection chamber filled with high purity liquid xenon (LXeTPC), in which the three-dimensional location and energy deposit of individual \g -ray interactions are accurately measured in one homogeneous volume. To determine the \g -ray initial direction (Compton imaging), as well as to reject background, the correct sequence of interactions has to be determined. Here we report the development and optimization of an algorithm to reconstruct the Compton scattering sequence and show its performance on Monte Carlo events and LXeGRIT data.Comment: To appear in: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics II, 2000; Proc. SPIE, vol. 4141; R.B. James & R.C. Schirato, ed

    Spin-dependent electron dynamics and recombination in GaAs(1-x)N(x) alloys at room temperature

    Full text link
    We report on both experimental and theoretical study of conduction-electron spin polarization dynamics achieved by pulsed optical pumping at room temperature in GaAs(1-x)N(x) alloys with a small nitrogen content (x = 2.1, 2.7, 3.4%). It is found that the photoluminescence circular polarization determined by the mean spin of free electrons reaches 40-45% and this giant value persists within 2 ns. Simultaneously, the total free-electron spin decays rapidly with the characteristic time ~150 ps. The results are explained by spin-dependent capture of free conduction electrons on deep paramagnetic centers resulting in dynamical polarization of bound electrons. We have developed a nonlinear theory of spin dynamics in the coupled system of spin-polarized free and localized carriers which describes the experimental dependencies, in particular, electron spin quantum beats observed in a transverse magnetic field.Comment: 5 pages, 4 figures, Submitted to JETP Letter

    Precision measurements of s-wave scattering lengths in a two-component Bose-Einstein condensate

    Full text link
    We use collective oscillations of a two-component Bose-Einstein condensate (2CBEC) of \Rb atoms prepared in the internal states 1F=1,mF=1\ket{1}\equiv\ket{F=1, m_F=-1} and 2F=2,mF=1\ket{2}\equiv\ket{F=2, m_F=1} for the precision measurement of the interspecies scattering length a12a_{12} with a relative uncertainty of 1.6×1041.6\times 10^{-4}. We show that in a cigar-shaped trap the three-dimensional (3D) dynamics of a component with a small relative population can be conveniently described by a one-dimensional (1D) Schr\"{o}dinger equation for an effective harmonic oscillator. The frequency of the collective oscillations is defined by the axial trap frequency and the ratio a12/a11a_{12}/a_{11}, where a11a_{11} is the intra-species scattering length of a highly populated component 1, and is largely decoupled from the scattering length a22a_{22}, the total atom number and loss terms. By fitting numerical simulations of the coupled Gross-Pitaevskii equations to the recorded temporal evolution of the axial width we obtain the value a12=98.006(16)a0a_{12}=98.006(16)\,a_0, where a0a_0 is the Bohr radius. Our reported value is in a reasonable agreement with the theoretical prediction a12=98.13(10)a0a_{12}=98.13(10)\,a_0 but deviates significantly from the previously measured value a12=97.66a0a_{12}=97.66\,a_0 \cite{Mertes07} which is commonly used in the characterisation of spin dynamics in degenerate \Rb atoms. Using Ramsey interferometry of the 2CBEC we measure the scattering length a22=95.44(7)a0a_{22}=95.44(7)\,a_0 which also deviates from the previously reported value a22=95.0a0a_{22}=95.0\,a_0 \cite{Mertes07}. We characterise two-body losses for the component 2 and obtain the loss coefficients γ12=1.51(18)×1014cm3/s{\gamma_{12}=1.51(18)\times10^{-14} \textrm{cm}^3/\textrm{s}} and γ22=8.1(3)×1014cm3/s{\gamma_{22}=8.1(3)\times10^{-14} \textrm{cm}^3/\textrm{s}}.Comment: 11 pages, 8 figure

    Spectroscopy and Imaging Performance of the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT)

    Get PDF
    LXeGRIT is a balloon-borne Compton telescope based on a liquid xenon time projection chamber (LXeTPC) for imaging cosmic \g-rays in the energy band of 0.2-20 MeV. The detector, with 400 cm2^2 area and 7 cm drift gap, is filled with high purity LXe. Both ionization and scintillation light signals are detected to measure the energy deposits and the three spatial coordinates of individual \g -ray interactions within the sensitive volume. The TPC has been characterized with repeated measurements of its spectral and Compton imaging response to \g -rays from radioactive sources such as \na, \cs, \yt and Am-Be. The detector shows a linear response to \g -rays in the energy range 511 keV -4.4 MeV, with an energy resolution (FWHM) of \Delta E/E=8.8% \: \sqrt{1\MeV /E}. Compton imaging of \yt \g -ray events with two detected interactions is consistent with an angular resolution of \sim 3 degrees (RMS) at 1.8 MeV.Comment: To appear in: Hard X-Ray, Gamma-Ray and Neutron Detector Physics XI, 2000; Proc. SPIE, vol. 4140; K.A. Flanagan & O.H. Siegmund, ed
    corecore