1,468 research outputs found
Comparative Analysis of a Transition Region Bright Point with a Blinker and Coronal Bright Point Using Multiple EIS Emission Lines
Since their discovery twenty year ago, transition region bright points
(TRBPs) have never been observed spectroscopically. Bright point properties
have not been compared with similar transition region and coronal structures.
In this work we have investigated three transient quiet Sun brightenings
including a TRBP, a coronal BP (CBP) and a blinker. We use time-series
observations of the extreme ultraviolet emission lines of a wide range of
temperature T (log T = 5.3 - 6.4) from the EUV imaging spectrometer (EIS)
onboard the Hinode satellite. We present the EIS temperature maps and Doppler
maps, which are compared with magnetograms from the Michelson Doppler Imager
(MDI) onboard the SOHO satellite. Doppler velocities of the TR BP and blinker
are <,25 km s, which is typical of transient TR phenomena. The Dopper
velocities of the CBP were found to be < 20 km s^{-1} with exception of those
measured at log T = 6.2 where a distinct bi-directional jet is observed. From
an EM loci analysis we find evidence of single and double isothermal components
in the TRBP and CBP, respectively. TRBP and CBP loci curves are characterized
by broad distributions suggesting the existence of unresolved structure. By
comparing and contrasting the physical characteristics of the events we find
the BP phenomena are an indication of multi-scaled self similarity, given
similarities in both their underlying magnetic field configuration and
evolution in relation to EUV flux changes. In contrast, the blinker phenomena
and the TRBP are sufficiently dissimilar in their observed properties as to
constitute different event classes. Our work indicates that the measurement of
similar characteristics across multiple event types holds class-predictive
power, and is a significant step towards automated solar atmospheric
multi-class classification of unresolved transient EUV sources.Comment: 38 pages, 16 figure
Evaluation of a Simplified Measurement for Low Glomerular Filtration Rates With lndium-111 DTPA
A rapid new method for measuring glomerular filtration rates using 111In diethylenetriamine pentaacetic acid (111In- DTPA) was evaluated with 39 patients who showed marked impairment of renal function (creatinine clearance less than 20 ml/min). A simple, single compartment system was assumed. For comparison, parallel inulin and creatinine clearances were performed. High linear correlations (r = 0.96-0.97) were demonstrated when 111In- DTPA clearances were compared with the standard nonisotopic tests. Initial data indicate that reliable isotopic clearance values could be obtained for low clearances by withdrawing only two blood samples for assay at 6 and 48 hours after isotope injection (without urine assay)
A combination of l-arabinose and chromium lowers circulating glucose and insulin levels after an acute oral sucrose challenge
<p>Abstract</p> <p>Background</p> <p>A growing body of research suggests that elevated circulating levels of glucose and insulin accelerate risk factors for a wide range of disorders. Low-risk interventions that could suppress glucose without raising insulin levels could offer significant long-term health benefits.</p> <p>Methods</p> <p>To address this issue, we conducted two sequential studies, the first with two phases. In the first phase of Study 1, baseline fasting blood glucose was measured in 20 subjects who consumed 70 grams of sucrose in water and subsequently completed capillary glucose measurements at 30, 45, 60 and 90 minutes (Control). On day-2 the same procedure was followed, but with subjects simultaneously consuming a novel formula containing l-arabinose and a trivalent patented food source of chromium (LA-Cr) (Treatment). The presence or absence of the LA-Cr was blinded to the subjects and testing technician. Comparisons of changes from baseline were made between Control and Treatment periods. In the second phase of Study 1, 10 subjects selected from the original 20 competed baseline measures of body composition (DXA), a 43-blood chemistry panel and a Quality of Life Inventory. These subjects subsequently took LA-Cr daily for 4 weeks completing daily tracking forms and repeating the baseline capillary tests at the end of each of the four weeks. In Study 2, the same procedures used in the first phase were repeated for 50 subjects, but with added circulating insulin measurements at 30 and 60 minutes from baseline.</p> <p>Results</p> <p>In both studies, as compared to Control, the Treatment group had significantly lower glucose responses for all four testing times (AUC = <it>P </it>< 0.0001). Additionally, the Treatment was significantly more effective in lowering circulating insulin after 60 minutes from baseline (AUC = <it>P </it>= < 0.01). No adverse effects were found after acute sucrose challenge or in those who consumed LA-Cr daily for four weeks.</p> <p>Conclusions</p> <p>As compared to a placebo control, consumption of a LA-Cr formula after a 70-gram sucrose challenge was effective in safely lowering both circulating glucose and insulin levels.</p> <p>Trial Registration</p> <p>Clinical Trials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT0110743">NCT0110743</a></p
Relative Reactivity of the Metal-Amido versus Metal-Imido Bond in Linked Cp-Amido and Half-Sandwich Complexes of Vanadium
Treatment of (η5-C5H4C2H4NR)V(N-t-Bu)Me (R = Me, i-Pr) and CpV(N-p-Tol)(N-i-Pr2)Me (Cp = η5-C5H5) with B(C6F5)3 or [Ph3C][B(C6F5)4] results in formation of the corresponding cations, [(η5-C5H4C2H4NR)V(N-t-Bu)]+ and [CpV(N-p-Tol)(N-i-Pr2)]+. The latter could also be generated as its N,N-dimethylaniline adduct by treatment of the methyl complex with [PhNMe2H][BAr4] (Ar = Ph, C6F5). Instead, the analogous reaction with the linked Cp-amido precursor results in protonation of the imido-nitrogen atom. Sequential cyclometalation of the amide substituents gave cationic imine complexes [(η5-C5H4C2H4NCR'2)V(NH-t-Bu)]+ (R' = H, Me) and methane. Reaction of cationic [(η5-C5H4C2H4NR)V(N-t-Bu)]+ with olefins affords the corresponding olefin adducts, whereas treatment with 1 or 2 equiv of 2-butyne results in insertion of the alkyne into the vanadium-nitrogen single bond, affording the mono- and bis-insertion products [(η5-C5H4C2H4N(i-Pr)C2Me2)V(N-t-Bu)]+ and [(η5-C5H4C2H4N(i-Pr)C4Me4)V(N-t-Bu)]+. The same reaction with the half-sandwich compound [CpV(N-p-Tol)(N-i-Pr2)]+ results in a paramagnetic compound that, upon alcoholysis, affords sec-butylidene-p-tolylamine, suggesting an initial [2+2] cycloaddition reaction. The difference in reactivity between the V-N bond versus the V=N bond was further studied using computational methods. Results were compared to the isoelectronic titanium system CpTi(NH)(NH2). These studies indicate that the kinetic product in each system is derived from a [2+2] cycloaddition reaction. For titanium, this was found as the thermodynamic product as well, whereas the insertion reaction was found to be thermodynamically more favorable in the case of vanadium.
Maximum Entropy and Bayesian Data Analysis: Entropic Priors
The problem of assigning probability distributions which objectively reflect
the prior information available about experiments is one of the major stumbling
blocks in the use of Bayesian methods of data analysis. In this paper the
method of Maximum (relative) Entropy (ME) is used to translate the information
contained in the known form of the likelihood into a prior distribution for
Bayesian inference. The argument is inspired and guided by intuition gained
from the successful use of ME methods in statistical mechanics. For experiments
that cannot be repeated the resulting "entropic prior" is formally identical
with the Einstein fluctuation formula. For repeatable experiments, however, the
expected value of the entropy of the likelihood turns out to be relevant
information that must be included in the analysis. The important case of a
Gaussian likelihood is treated in detail.Comment: 23 pages, 2 figure
Static overscreening and nonlinear response in the Hubbard Model
We investigate the static charge response for the Hubbard model. Using the
Slave-Boson method in the saddle-point approximation we calculate the charge
susceptibility. We find that RPA works quite well close to half-filling,
breaking, of course, down close to the Mott transition. Away from half filling
RPA is much less reliable: Already for very small values of the Hubbard
interaction U, the linear response becomes much more efficient than RPA,
eventually leading to overscreening already beyond quite moderate values of U.
To understand this behavior we give a simple argument, which implies that the
response to an external perturbation at large U should actually be strongly
non-linear. This prediction is confirmed by the results of exact
diagonalization.Comment: 10 pages, 7 figures, RevTe
Ground-State Dynamical Correlation Functions: An Approach from Density Matrix Renormalization Group Method
A numerical approach to ground-state dynamical correlation functions from
Density Matrix Renormalization Group (DMRG) is developed. Using sum rules,
moments of a dynamic correlation function can be calculated with DMRG, and with
the moments the dynamic correlation function can be obtained by the maximum
entropy method. We apply this method to one-dimensional spinless fermion
system, which can be converted to the spin 1/2 Heisenberg model in a special
case. The dynamical density-density correlation function is obtained.Comment: 11 pages, latex, 4 figure
Operator projection method applied to the single-particle Green's function in the Hubbard model
A new non-perturbative framework for many-body correlated systems is
formulated by extending the operator projection method (OPM). This method
offers a systematic expansion which enables us to project into the low-energy
structure after extracting the higher-energy hierarchy. This method also opens
a way to systematically take into account the effects of collective
excitations. The Mott-Hubbard metal-insulator transition in the Hubbard model
is studied by means of this projection beyond the second order by taking into
account magnetic and charge fluctuations in the presence of the high-energy
Mott-Hubbard structure. At half filling, the Mott-Hubbard gap is correctly
eproduced between the separated two bands. Near half filling, a strongly
renormalized low-energy single-particle excitations coexisting with the
Mott-Hubbard bands are shown to appear. Signifcance of momentum-dependent
self-energy in the results is stressed.Comment: 6 pages, final version to appear in J. Phys. Soc. Jp
Anomalous low doping phase of the Hubbard model
We present results of a systematic Quantum-Monte-Carlo study for the
single-band Hubbard model. Thereby we evaluated single-particle spectra (PES &
IPES), two-particle spectra (spin & density correlation functions), and the
dynamical correlation function of suitably defined diagnostic operators, all as
a function of temperature and hole doping. The results allow to identify
different physical regimes. Near half-filling we find an anomalous `Hubbard-I
phase', where the band structure is, up to some minor modifications, consistent
with the Hubbard-I predictions. At lower temperatures, where the spin response
becomes sharp, additional dispersionless `bands' emerge due to the dressing of
electrons/holes with spin excitatons. We present a simple phenomenological fit
which reproduces the band structure of the insulator quantitatively. The Fermi
surface volume in the low doping phase, as derived from the single-particle
spectral function, is not consistent with the Luttinger theorem, but
qualitatively in agreement with the predictions of the Hubbard-I approximation.
The anomalous phase extends up to a hole concentration of 15%, i.e. the
underdoped region in the phase diagram of high-T_c superconductors. We also
investigate the nature of the magnetic ordering transition in the single
particle spectra. We show that the transition to an SDW-like band structure is
not accomplished by the formation of any resolvable `precursor bands', but
rather by a (spectroscopically invisible) band of spin 3/2 quasiparticles. We
discuss implications for the `remnant Fermi surface' in insulating cuprate
compounds and the shadow bands in the doped materials.Comment: RevTex-file, 20 PRB pages, 16 figures included partially as gif. A
full ps-version including ps-figures can be found at
http://theorie.physik.uni-wuerzburg.de/~eder/condmat.ps.gz Hardcopies of
figures (or the entire manuscript) can also be obtained by e-mail request to:
[email protected]
Consistent Application of Maximum Entropy to Quantum-Monte-Carlo Data
Bayesian statistics in the frame of the maximum entropy concept has widely
been used for inferential problems, particularly, to infer dynamic properties
of strongly correlated fermion systems from Quantum-Monte-Carlo (QMC) imaginary
time data. In current applications, however, a consistent treatment of the
error-covariance of the QMC data is missing. Here we present a closed Bayesian
approach to account consistently for the QMC-data.Comment: 13 pages, RevTeX, 2 uuencoded PostScript figure
- âŠ