648 research outputs found

    Testing Superstring Theories with Gravitational Waves

    Full text link
    We provide a simple transfer function that determines the effect of an early matter dominated era on the gravitational wave background and show that a large class of compactifications of superstring theory might be tested by observations of the gravitational wave background from inflation. For large enough reheating temperatures > 10^9 \GeV the test applies to all models containing at least one scalar with mass < 10^{12}\GeV that acquires a large initial oscillation amplitude after inflation and has only gravitational interaction strength, i.e., a field with the typical properties of a modulus.Comment: 5 pages 2 figures, v2: changes in presentation, refs revised, matches version in print in PR

    CMB anisotropies in the presence of a stochastic magnetic field

    Full text link
    Primordial magnetic fields present since before the epoch of matter-radiation equality have an effect on the anisotropies of the cosmic microwave background. The CMB anisotropies due to scalar perturbations are calculated in the gauge invariant formalism for magnetized adiabatic initial conditions. Furthermore the linear matter power spectrum is calculated. Numerical solutions are complemented by a qualitative analysis.Comment: 26 pages, 21 figures; sections 2 and 4 expanded; matches version published in PR

    Flexible Micro Thermoelectric Generator based on Electroplated Bi2Te3

    Get PDF
    We present and discuss the fabrication process and the performance of a flexible micro thermoelectric generator with electroplated Bi2Te3 thermocouples in a SU-8 mold. Demonstrator devices generate 278uWcm-2 at dTmeas=40K across the experimental set up. Based on model calculations, a temperature difference of dTG=21.4K across the generator is assumed. Due to the flexible design and the chosen generator materials, the performance stays high even for curved contact surfaces. The measurement results correlate well with the model based design optimization predictions.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Generation of helical magnetic fields from inflation

    Full text link
    The generation of helical magnetic fields during single field inflation due to an axial coupling of the electromagnetic field to the inflaton is discussed. We find that such a coupling always leads to a blue spectrum of magnetic fields during slow roll inflation. Though the helical magnetic fields further evolve during the inverse cascade in the radiation era after inflation, we conclude that the magnetic fields generated by such an axial coupling can not lead to observed field strength on cosmologically relevant scales.Comment: 4 pages, 1 figure; Contribution to the proceedings of the International Conference on Gravitation and Cosmology (ICGC), Goa, India, December, 201

    Evolution of magnetic fields through cosmological perturbation theory

    Full text link
    The origin of galactic and extra-galactic magnetic fields is an unsolved problem in modern cosmology. A possible scenario comes from the idea of these fields emerged from a small field, a seed, which was produced in the early universe (phase transitions, inflation, ...) and it evolves in time. Cosmological perturbation theory offers a natural way to study the evolution of primordial magnetic fields. The dynamics for this field in the cosmological context is described by a cosmic dynamo like equation, through the dynamo term. In this paper we get the perturbed Maxwell's equations and compute the energy momentum tensor to second order in perturbation theory in terms of gauge invariant quantities. Two possible scenarios are discussed, first we consider a FLRW background without magnetic field and we study the perturbation theory introducing the magnetic field as a perturbation. The second scenario, we consider a magnetized FLRW and build up the perturbation theory from this background. We compare the cosmological dynamo like equation in both scenarios

    The Cosmic Microwave Background and Helical Magnetic Fields: the tensor mode

    Full text link
    We study the effect of a possible helicity component of a primordial magnetic field on the tensor part of the cosmic microwave background temperature anisotropies and polarization. We give analytical approximations for the tensor contributions induced by helicity, discussing their amplitude and spectral index in dependence of the power spectrum of the primordial magnetic field. We find that an helical magnetic field creates a parity odd component of gravity waves inducing parity odd polarization signals. However, only if the magnetic field is close to scale invariant and if its helical part is close to maximal, the effect is sufficiently large to be observable. We also discuss the implications of causality on the magnetic field spectrum.Comment: We have corrected a normalisation error which was pointed out to us by Antony Lewis. It enhances our limits on the magnetic fields by (2\pi)^{3/4} ~

    Acoustic peaks and dips in the CMB power spectrum: observational data and cosmological constraints

    Get PDF
    The locations and amplitudes of three acoustic peaks and two dips in the last releases of the Boomerang, MAXIMA and DASI measurements of the cosmic microwave background (CMB) anisotropy power spectra as well as their statistical confidence levels are determined in a model-independent way. It is shown that the Boomerang-2001 data (Netterfield et al. 2001) fixes the location and amplitude of the first acoustic peak at more than 3\sigma confidence level. The next two peaks and dips are determined at a confidence level above 1\sigma but below 2\sigma. The locations and amplitudes of the first three peaks and two dips are 212+/-17, 5426+/-1218\mu K^2, 544+/-56, 2266+/-607\mu K^2, 843+/-35, 2077+/-876\mu K^2, 413+/-50, 1960+/-503\mu K^2, 746+/-89, 1605+/-650\mu K^2 respectively (1\sigma errors include statistical and systematic errors). The MAXIMA and DASI experiments give similar values for the extrema which they determine. The determined cosmological parameters from the CMB acoustic extrema data show good agreement with other determinations, especially with the baryon content as deduced from standard nucleosynthesis constraints. These data supplemented by the constraints from direct measurements of some cosmological parameters and data on large scale structure lead to a best-fit model which agrees with practically all the used experimental data within 1\sigma. The best-fit parameters are: \Omega_{\Lambda}=0.64^{+0.14}_{-0.27}, \Omega_{m}= 0.36^{+0.21}_{-0.11}, \Omega_b=0.047^{+0.093}_{-0.024}, n_s=1.0^{+0.59}_{-0.17}, h=0.65^{+0.35}_{-0.27} and \tau_c=0.15^{+0.95}_{-0.15} (plus/minus values show 1\sigma upper/lower limits obtained by marginalization over all other model parameters). The best-fit values of \Omega_{\nu} and T/S are close to zero, their 1\sigma upper limits are 0.17 and 1.7 respectively.Comment: 34 pages, 10 figures; accepted by ApJ; some corrections in the text are made and a few references are adde

    Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach

    Full text link
    Gravitational wave production from bubble collisions was calculated in the early nineties using numerical simulations. In this paper, we present an alternative analytic estimate, relying on a different treatment of stochasticity. In our approach, we provide a model for the bubble velocity power spectrum, suitable for both detonations and deflagrations. From this, we derive the anisotropic stress and analytically solve the gravitational wave equation. We provide analytical formulae for the peak frequency and the shape of the spectrum which we compare with numerical estimates. In contrast to the previous analysis, we do not work in the envelope approximation. This paper focuses on a particular source of gravitational waves from phase transitions. In a companion article, we will add together the different sources of gravitational wave signals from phase transitions: bubble collisions, turbulence and magnetic fields and discuss the prospects for probing the electroweak phase transition at LISA.Comment: 48 pages, 14 figures. v2 (PRD version): calculation refined; plots redone starting from Fig. 4. Factor 2 in GW energy spectrum corrected. Main conclusions unchanged. v3: Note added at the end of paper to comment on the new results of 0901.166
    • …
    corecore