39,889 research outputs found

    Microlensing path parametrization for Earth-like Exoplanet detection around solar mass stars

    Full text link
    We propose a new parametrization of the impact parameter u0 and impact angle {\alpha} for microlensing systems composed by an Earth-like Exoplanet around a Solar mass Star at 1 AU. We present the caustic topology of such system, as well as the related light curves generated by using such a new parametrization. Based on the same density of points and accuracy of regular methods, we obtain results 5 times faster for discovering Earth-like exoplanet. In this big data revolution of photometric astronomy, our method will impact future missions like WFIRST (NASA) and Euclid (ESA) and they data pipelines, providing a rapid and deep detection of exoplanets for this specific class of microlensing event that might otherwise be lost.Comment: 8 pages, 7 figures, accepted to be published in The Astronomical Journa

    Self-dual Hopfions

    Full text link
    We construct static and time-dependent exact soliton solutions with non-trivial Hopf topological charge for a field theory in 3+1 dimensions with the target space being the two dimensional sphere S**2. The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.Comment: plain latex, no figures, 23 page

    Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

    Get PDF
    Plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simple cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect

    Comunicação de organizações públicas no twitter.

    Get PDF
    Globalização e tecnologias digitais de comunicação. Redes sociais: a cultura como pano de fundo. Redes sociais: sobre o twitter. Relacionamento simétrico ou assimétrico das organizações.COMUNICON
    corecore