6 research outputs found

    Seismic response assessment and protection of statues and busts

    Get PDF
    Recent post-earthquake surveys carried out in Europe have shown that earthquake actions pose an immense threat to museums and their contents. For example, during the earthquake on 21 July 2017 in the island of Kos (Greece), severe and widespread damage on the city’s archaeological museum was reported (Figure 1). The earthquake extensively damaged the sculpture exhibition, where many pieces were dislocated, leaned against the walls, or overturned. Fortunately, the earthquake occurred when human visitors were not in the museum, since the damage to the exhibits varied from very light (minor fracturing) to severe (complete overturning and fracture of artefacts). In the case of heavy and slender sculptures, the overturning mechanism, apart from damaging the sculptures themselves, is a serious threat to other standing exhibits in the gallery and the visitors. It is, therefore, of paramount importance to have at our disposal methods and tools for characterising the seismic risk of museum artefacts and, where necessary, proposing cost-efficient protective measures. The study of the seismic vulnerability of museum artefacts, especially of slender, human-formed statues, is related to the research on the dynamic response of rocking rigid blocks. The dynamic characteristics of the hosting structures are also important. This is evident from the fact that, on many occasions, damage to the structure was reported leaving the exhibits intact and vice-versa. Although the problem is coupled, it can be studied looking separately at the structure and its contents, provided that the contents are not attached to the building. The seismic response of building contents is a topic of growing interest, since it is directly related to seismic loss assessment and earthquake community resilience. Building contents can be either attached to the structure, or may consist of objects that are simply standing. Museum exhibits belong to the latter category, while free-standing components are often studied as rocking objects and hence their response is sensitive to acceleration and velocity-based quantities and also to their geometry. Today, there is lack of standards, while the existing approaches are general in concept and do not sufficiently address the variety of rocking objects. The problem becomes more complicated when it comes to priceless objects such as museum artefacts where more refined and targeted studies are required for understanding their seismic response and also for proposing rapid tools for assessing their seismic risk. The paper presents an extensive experimental campaign on the seismic response of artefacts, with emphasis on statues and busts. The tests took place in the framework of SEREME project (Seismic Resilience of Museum Contents) at the AZALEE seismic simulator of CEA in Saclay, Paris under the auspices of the SERA project. The aim is to understand the seismic response of statues and busts and then develop novel and cost-effective risk mitigation schemes for improving the seismic resilience of museum valuable contents. The study is focused on the investigation of the seismic response of two real-scale marble roman statues and three busts of three roman emperors standing on pedestals of different types and size. Both isolated and non-isolated artefacts are considered, while two new and highly efficient base isolation systems, tailored to art objects, will be tested. The first isolator is a pendulum-based system, while the second utilizes Shape Memory Alloy wires. Furthermore, the paper examines the importance of the hosting building, i.e. building type and story. Specifically tailored, numerical models of varying complexity, for single and two-block rocking systems, were developed for the needs of this study and are also assessed against the experimental results

    Pushover Analysis of GFRP Pultruded Frames

    No full text
    Results of a pushover analysis of GFRP pultruded frames aimed at the evaluation of their overall ductility are presented. It is assumed that the dissipation capacity of the frame structures is concentrated in joints due to their nonlinear behavior induced by progressive damage, while a brittle-elastic behavior is assumed for frame members. A two-storey one-bay GFRP pultruded frame is considered for a case study in which the column-base and beam-column joints are modeled with nonlinear rotational springs with different moment-rotation laws derived from experimental results available in the literature. For comparison, frames with hinged connections and moment-resisting frames are also analyzed. Finally, the results obtained are compared with those for a similar steel frame. The final results bear witness, in particular, to the absence of a significant ductility of pultruded frames and the relevant influence of the characteristics of bracings on their structural response
    corecore