4,810 research outputs found
Performance of the diamond active target prototype for the PADME experiment at the DANE BTF
The PADME experiment at the DANE Beam-Test Facility (BTF) is designed
to search for the gauge boson of a new  interaction in the process
ee+, using the intense positron beam hitting a
light target. The , usually referred as dark photon, is assumed to
decay into invisible particles of a secluded sector and it can be observed by
searching for an anomalous peak in the spectrum of the missing mass measured in
events with a single photon in the final state. The measurement requires the
determination of the 4-momentum of the recoil photon, performed by a
homogeneous, highly segmented BGO crystals calorimeter. A significant
improvement of the missing mass resolution is possible using an active target
capable to determine the average position of the positron bunch with a
resolution of less than 1 mm. This report presents the performance of a real
size  PADME active target made of a thin (50 m) diamond
sensor, with graphitic strips produced via laser irradiation on both sides. The
measurements are based on data collected in a beam test at the BTF in November
2015.Comment: 7 pages, 10 figure
Performance of the PADME calorimeter prototype at the DANE BTF
The PADME experiment at the DANE Beam-Test Facility (BTF) aims at
searching for invisible decays of the dark photon by measuring the final state
missing mass in the process , with  undetected. The
measurement requires the determination of the 4-momentum of the recoil photon,
performed using a homogeneous, highly segmented BGO crystals calorimeter. We
report the results of the test of a 55 crystals prototype performed
with an electron beam at the BTF in July 2016
Characterization and Performance of PADME's Cherenkov-Based Small-Angle Calorimeter
The PADME experiment, at the Laboratori Nazionali di Frascati (LNF), in
Italy, will search for invisible decays of the hypothetical dark photon via the
process , where the  escapes detection. The
dark photon mass range sensitivity in a first phase will be 1 to 24 MeV. We
report here on measurement and simulation studies of the performance of the
Small-Angle Calorimeter, a component of PADME's detector dedicated to rejecting
2- and 3-gamma backgrounds. The crucial requirement is a timing resolution of
less than 200 ps, which is satisfied by the choice of PbF crystals and the
newly released Hamamatsu R13478UV photomultiplier tubes (PMTs). We find a
timing resolution of 81 ps (with double-peak separation resolution of 1.8 ns)
and a single-crystal energy resolution of 5.7%/ with light yield of
2.07 photo-electrons per MeV, using 100 to 400 MeV electrons at the Beam Test
Facility of LNF. We also propose the investigation of a two-PMT solution
coupled to a single PbF crystal for higher-energy applications, which has
potentially attractive features.Comment: 12 pages, 19 figures. v2: added section on radiation damage studie
Particles with anomalous magnetic moment in external e.m. fields: the proper time formulation
In this paper we evaluate the expression for the Green function of a
pseudo-classical spinning particle interacting with constant electromagnetic
external fields by taking into account the anomalous magnetic and electric
moments of the particle. The spin degrees of freedom are described in terms of
Grassmann variables and the evolution operator is obtained through the
Fock-Schwinger proper time method.Comment: 10 page
Low energy high angular resolution neutral atom detection by means of micro-shuttering techniques: the BepiColombo SERENA/ELENA sensor
The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA
cornerstone BepiColombo mission to Mercury (in the SERENA instrument package)
is a new kind of low energetic neutral atoms instrument, mostly devoted to
sputtering emission from planetary surfaces, from E ~20 eV up to E~5 keV,
within 1-D (2x76 deg). ELENA is a Time-of-Flight (TOF) system, based on
oscillating shutter (operated at frequencies up to a 100 kHz) and mechanical
gratings: the incoming neutral particles directly impinge upon the entrance
with a definite timing (START) and arrive to a STOP detector after a flight
path. After a brief dissertation on the achievable scientific objectives, this
paper describes the instrument, with the new design techniques approached for
the neutral particles identification and the nano-techniques used for designing
and manufacturing the nano-structure shuttering core of the ELENA sensor. The
expected count-rates, based on the Hermean environment features, are shortly
presented and discussed. Such design technologies could be fruitfully exported
to different applications for planetary exploration.Comment: 11 page
The Central Laser Facility at the Pierre Auger Observatory
The Central Laser Facility is located near the middle of the Pierre Auger
Observatory in Argentina. It features a UV laser and optics that direct a beam
of calibrated pulsed light into the sky. Light scattered from this beam
produces tracks in the Auger optical detectors which normally record nitrogen
fluorescence tracks from cosmic ray air showers. The Central Laser Facility
provides a "test beam" to investigate properties of the atmosphere and the
fluorescence detectors. The laser can send light via optical fiber
simultaneously to the nearest surface detector tank for hybrid timing analyses.
We describe the facility and show some examples of its many uses.Comment: 4 pages, 5 figures, submitted to 29th ICRC Pune Indi
The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers
The AMY experiment aims to measure the microwave bremsstrahlung radiation
(MBR) emitted by air-showers secondary electrons accelerating in collisions
with neutral molecules of the atmosphere. The measurements are performed using
a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN
National Laboratories. The goal of the AMY experiment is to measure in
laboratory conditions the yield and the spectrum of the GHz emission in the
frequency range between 1 and 20 GHz. The final purpose is to characterise the
process to be used in a next generation detectors of ultra-high energy cosmic
rays. A description of the experimental setup and the first results are
presented.Comment: 3 pages -- EPS-HEP'13 European Physical Society Conference on High
  Energy Physics (July, 18-24, 2013) at Stockholm, Swede
INFN Camera demonstrator for the Cherenkov Telescope Array
The Cherenkov Telescope Array is a world-wide project for a new generation of
ground-based Cherenkov telescopes of the Imaging class with the aim of
exploring the highest energy region of the electromagnetic spectrum. With two
planned arrays, one for each hemisphere, it will guarantee a good sky coverage
in the energy range from a few tens of GeV to hundreds of TeV, with improved
angular resolution and a sensitivity in the TeV energy region better by one
order of magnitude than the currently operating arrays. In order to cover this
wide energy range, three different telescope types are envisaged, with
different mirror sizes and focal plane features. In particular, for the highest
energies a possible design is a dual-mirror Schwarzschild-Couder optical
scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based
camera is being proposed as a solution to match the dimensions of the pixel
(angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made
by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the
focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near
UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a
Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer,
self-trigger and on-demand digitization capabilities specifically developed for
this purpose. The pixel dimensions of  mm lead to a very compact
design with challenging problems of thermal dissipation. A modular structure,
made by copper frames hosting one PSM and the corresponding FEE, has been
conceived, with a water cooling system to keep the required working
temperature. The actual design, the adopted technical solutions and the
achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference
  (ICRC2015), The Hague, The Netherlands. All CTA contributions at
  arXiv:1508.0589
- …
