33 research outputs found
Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2
RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice
antiferromagnet (TLA) that displays a zero-field magnetically-driven
multiferroic phase with a chiral spin structure. By inelastic neutron
scattering, we determine quantitatively the spin Hamiltonian. We show that the
easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making
RbFe(MoO4)2 an excellent system for studying the physics of the model 2D
easy-plane TLA. Our measurements demonstrate magnetic-field induced
fluctuations in this material to stabilize the generic finite-field phases of
the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can
generate ferroelectricity only in the zero field phase. Our conclusion is that
multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from
the generic properties of the 2D XY TLA.Comment: 5 pages, 5 figures, accepted in PRB as a Rapid Communicatio
Triplet spin resonance of the Haldane compound with interchain coupling
Spin resonance absorption of the triplet excitations is studied
experimentally in the Haldane magnet PbNi2V2O8. The spectrum has features of
spin S=1 resonance in a crystal field, with all three components, corresponding
to transitions between spin sublevels, being observable. The resonance field is
temperature dependent, indicating the renormalization of excitation spectrum in
interaction between the triplets. Magnetic resonance frequencies and critical
fields of the magnetization curve are consistent with a boson version of the
macroscopic field theory [Affleck 1992, Farutin & Marchenko 2007], implying the
field induced ordering at the critical field, while contradict the previously
used approach of noninteracting spin chains.Comment: 7 pages, 9 figure
Direct transition from a disordered to a multiferroic phase on a triangular lattice
Competing interactions and geometric frustration provide favourable
conditions for exotic states of matter. Such competition often causes multiple
phase transitions as a function of temperature and can lead to magnetic
structures that break inversion symmetry, thereby inducing ferroelectricity
[1-4]. Although this phenomenon is understood phenomenologically [3-4], it is
of great interest to have a conceptually simpler system in which
ferroelectricity appears coincident with a single magnetic phase transition.
Here we report the first such direct transition from a paramagnetic and
paraelectric phase to an incommensurate multiferroic in the triangular lattice
antiferromagnet RbFe(MoO4)2 (RFMO). A magnetic field extinguishes the electric
polarization when the symmetry of the magnetic order changes and
ferroelectricity is only observed when the magnetic structure has chirality and
breaks inversion symmetry. Multiferroic behaviour in RFMO provides a
theoretically tractable example of ferroelectricity from competing spin
interactions. A Landau expansion of symmetry-allowed terms in the free energy
demonstrates that the chiral magnetic order of the triangular lattice
antiferromagnet gives rise to a pseudoelectric field, whose temperature
dependence agrees with that observed experimentally.Comment: 16 pages pdf including 3 figure
Quasi two-dimensional antiferromagnet on a triangular lattice RbFe(MoO4)2
RbFe(MoO4)2 is a rare example of a nearly two-dimensional Heisenberg
antiferromagnet on a triangular lattice. Magnetic resonance spectra and
magnetization curves reveal that the system has a layered spin structure with
six magnetic sublattices. The sublattices within a layer are arranged in a
triangular manner with the magnetization vectors 120 degree apart. The H-T
phase diagram, containing at least five different magnetic phases is
constructed. In zero field, RbFe(MoO4)2 undergoes a phase transition at T_N=3.8
K into a non-collinear triangular spin structure with all the spins confined in
the basal plane. The application of an in-plane magnetic field induces a
collinear spin state between the fields H_c1=47 kOe and H_c2=71 kOe and
produces a magnetization plateau at one-third of the saturation moment. Both
the ESR and the magnetization measurements also clearly indicate an additional
first-order phase transition in a field of 35 kOe. The exact nature of this
phase transition is uncertain.Comment: 9 pages incl 11 figure
Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis
Rational control over the morphology and the functional properties of inorganic nanostructures has been a long-standing goal in the development of bottom-up device fabrication processes. We report that the geometry of hydrothermally grown zinc oxide nanowires can be tuned from platelets to needles, covering more than three orders of magnitude in aspect ratio (~0.1–100). We introduce a classical thermodynamics-based model to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions. The performance of these nanowires rivals that of vapour-phase-grown nanostructures and their low-temperature synthesis (<60 °C) is favourable to the integration and in situ fabrication of complex and polymer-supported devices. We illustrate this capability by fabricating an all-inorganic light-emitting diode in a polymeric microfluidic manifold. Our findings indicate that electrostatic interactions in aqueous crystal growth may be systematically manipulated to synthesize nanostructures and devices with enhanced structural control.National Science Foundation (U.S.) (MIT Center for Bits and Atoms (NSF CCR0122419))Massachusetts Institute of Technology. Media LaboratoryKorea Foundation for Advanced StudiesSamsung Electronics Co. (research internship)Harvard University. Society of FellowsWallace H. Coulter Foundation (Early Career Award)Brain & Behavior Research Foundation (Young Investigator Award)National Science Foundation (U.S.)National Institutes of Health (U.S.) (Director’s New Innovator Award
Paramagnetic and antiferromagnetic resonances in the diamagnetically diluted Haldane magnet PbNi2V2O8
The impurity-induced antiferromagnetic ordering of the doped Haldane magnet
Pb(Ni{1-x}Mg{x})2V2O8 (0 < x <0.06) was studied by electron spin resonance
(ESR) on ceramic samples in the frequency range 9-110 GHz. Below the N\'{e}el
temperature a transformation of the ESR spectrum was found, indicating an
antiferromagnetic resonance mode of spin precession. The excitation gap of the
spin-wave spectrum increases with increasing Mg-concentration in the same
manner as the N\'{e}el temperature, reaching its maximum value of 80 GHz at x >
0.04. At small concentrations x < 0.02 the signals of antiferromagnetic
resonance were found to coexist with the signal of the paramagnetic resonance
indicating a microscopic separation of the magnetic phases.Comment: 10 pages, 9 figure