33 research outputs found

    Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2

    Full text link
    RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays a zero-field magnetically-driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering, we determine quantitatively the spin Hamiltonian. We show that the easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making RbFe(MoO4)2 an excellent system for studying the physics of the model 2D easy-plane TLA. Our measurements demonstrate magnetic-field induced fluctuations in this material to stabilize the generic finite-field phases of the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can generate ferroelectricity only in the zero field phase. Our conclusion is that multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from the generic properties of the 2D XY TLA.Comment: 5 pages, 5 figures, accepted in PRB as a Rapid Communicatio

    Triplet spin resonance of the Haldane compound with interchain coupling

    Full text link
    Spin resonance absorption of the triplet excitations is studied experimentally in the Haldane magnet PbNi2V2O8. The spectrum has features of spin S=1 resonance in a crystal field, with all three components, corresponding to transitions between spin sublevels, being observable. The resonance field is temperature dependent, indicating the renormalization of excitation spectrum in interaction between the triplets. Magnetic resonance frequencies and critical fields of the magnetization curve are consistent with a boson version of the macroscopic field theory [Affleck 1992, Farutin & Marchenko 2007], implying the field induced ordering at the critical field, while contradict the previously used approach of noninteracting spin chains.Comment: 7 pages, 9 figure

    Direct transition from a disordered to a multiferroic phase on a triangular lattice

    Get PDF
    Competing interactions and geometric frustration provide favourable conditions for exotic states of matter. Such competition often causes multiple phase transitions as a function of temperature and can lead to magnetic structures that break inversion symmetry, thereby inducing ferroelectricity [1-4]. Although this phenomenon is understood phenomenologically [3-4], it is of great interest to have a conceptually simpler system in which ferroelectricity appears coincident with a single magnetic phase transition. Here we report the first such direct transition from a paramagnetic and paraelectric phase to an incommensurate multiferroic in the triangular lattice antiferromagnet RbFe(MoO4)2 (RFMO). A magnetic field extinguishes the electric polarization when the symmetry of the magnetic order changes and ferroelectricity is only observed when the magnetic structure has chirality and breaks inversion symmetry. Multiferroic behaviour in RFMO provides a theoretically tractable example of ferroelectricity from competing spin interactions. A Landau expansion of symmetry-allowed terms in the free energy demonstrates that the chiral magnetic order of the triangular lattice antiferromagnet gives rise to a pseudoelectric field, whose temperature dependence agrees with that observed experimentally.Comment: 16 pages pdf including 3 figure

    Quasi two-dimensional antiferromagnet on a triangular lattice RbFe(MoO4)2

    Full text link
    RbFe(MoO4)2 is a rare example of a nearly two-dimensional Heisenberg antiferromagnet on a triangular lattice. Magnetic resonance spectra and magnetization curves reveal that the system has a layered spin structure with six magnetic sublattices. The sublattices within a layer are arranged in a triangular manner with the magnetization vectors 120 degree apart. The H-T phase diagram, containing at least five different magnetic phases is constructed. In zero field, RbFe(MoO4)2 undergoes a phase transition at T_N=3.8 K into a non-collinear triangular spin structure with all the spins confined in the basal plane. The application of an in-plane magnetic field induces a collinear spin state between the fields H_c1=47 kOe and H_c2=71 kOe and produces a magnetization plateau at one-third of the saturation moment. Both the ESR and the magnetization measurements also clearly indicate an additional first-order phase transition in a field of 35 kOe. The exact nature of this phase transition is uncertain.Comment: 9 pages incl 11 figure

    Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis

    Get PDF
    Rational control over the morphology and the functional properties of inorganic nanostructures has been a long-standing goal in the development of bottom-up device fabrication processes. We report that the geometry of hydrothermally grown zinc oxide nanowires can be tuned from platelets to needles, covering more than three orders of magnitude in aspect ratio (~0.1–100). We introduce a classical thermodynamics-based model to explain the underlying growth inhibition mechanism by means of the competitive and face-selective electrostatic adsorption of non-zinc complex ions at alkaline conditions. The performance of these nanowires rivals that of vapour-phase-grown nanostructures and their low-temperature synthesis (<60 °C) is favourable to the integration and in situ fabrication of complex and polymer-supported devices. We illustrate this capability by fabricating an all-inorganic light-emitting diode in a polymeric microfluidic manifold. Our findings indicate that electrostatic interactions in aqueous crystal growth may be systematically manipulated to synthesize nanostructures and devices with enhanced structural control.National Science Foundation (U.S.) (MIT Center for Bits and Atoms (NSF CCR0122419))Massachusetts Institute of Technology. Media LaboratoryKorea Foundation for Advanced StudiesSamsung Electronics Co. (research internship)Harvard University. Society of FellowsWallace H. Coulter Foundation (Early Career Award)Brain & Behavior Research Foundation (Young Investigator Award)National Science Foundation (U.S.)National Institutes of Health (U.S.) (Director’s New Innovator Award

    Paramagnetic and antiferromagnetic resonances in the diamagnetically diluted Haldane magnet PbNi2V2O8

    Full text link
    The impurity-induced antiferromagnetic ordering of the doped Haldane magnet Pb(Ni{1-x}Mg{x})2V2O8 (0 < x <0.06) was studied by electron spin resonance (ESR) on ceramic samples in the frequency range 9-110 GHz. Below the N\'{e}el temperature a transformation of the ESR spectrum was found, indicating an antiferromagnetic resonance mode of spin precession. The excitation gap of the spin-wave spectrum increases with increasing Mg-concentration xx in the same manner as the N\'{e}el temperature, reaching its maximum value of 80 GHz at x > 0.04. At small concentrations x < 0.02 the signals of antiferromagnetic resonance were found to coexist with the signal of the paramagnetic resonance indicating a microscopic separation of the magnetic phases.Comment: 10 pages, 9 figure

    >

    No full text
    corecore