216 research outputs found
Long-range topological insulators and weakened bulk-boundary correspondence
We formalize the appearance of new types of insulators in long-range (LR)
fermionic systems. These phases are not included in the "ten-fold way
classification" (TWC) for the short-range (SR) topological insulators. This
conclusion is obtained studying at first specific one-dimensional LR examples,
in particular their phase diagrams and contents in symmetries and entanglement.
The purely long-range phases (LRP) are signaled by the violation of the
area-law for the Von Neumann entropy and by corresponding peculiar
distributions for the entanglement spectrum (ES). The origin of the deviations
from the TWC is analyzed from a more general point of view and in any
dimension. In particular, it is found related with a particular type of
divergences occurring in the spectrum, due to the LR couplings. A satisfying
characterization for the LRP can be achieved at least for one-dimensional
systems, as well as the connected definition of a nontrivial topology, provided
a careful evaluation of the LR contributions. Our results lead to reconsider
the definition of correlation length in LR systems. The same analysis also
allows to infer, at least for one-dimensional models, the weakening of the
bulk-boundary correspondence, due to the important correlations between bulk
and edges, and consequently to clarify the nature of the massive edge states
appearing in the topological LR. The emergence of this peculiar edge structure
is signaled by the bulk ES. The stability of the LRP against finite-size
effects, relevant in current experiments, and against local disorder is
discussed, showing that the latter ingredient can even strengthen the effect of
the LR couplings. Finally, we analyze the entanglement content of the
paradigmatic LR Ising spin chain, inferring again important deviations from the
SR regime, and the limitations of bulk-boundary (tensor-network based)
approaches to classify LR spin models
Two-mode dipolar bosonic junctions
We consider a two-mode atomic Josephson junction realized with dilute dipolar
bosons confined by a double-well. We employ the two-site extended Bose-Hubbard
Hamiltonian and characterize the ground-state of this system by the Fisher
information, coherence visibility, and entanglement entropy. These quantities
are studied as functions of the interaction between bosons in different wells.
The emergence of Schroedinger-cat like state with a loss of coherence is also
commented.Comment: 9 pages, 1 figur
Self-consistent Keldysh approach to quenches in weakly interacting Bose-Hubbard model
We present a non-equilibrium Green's functional approach to study the
dynamics following a quench in weakly interacting Bose Hubbard model (BHM). The
technique is based on the self-consistent solution of a set of equations which
represents a particular case of the most general set of Hedin's equations for
the interacting single-particle Green's function. We use the ladder
approximation as a skeleton diagram for the two-particle scattering amplitude
useful, through the self-energy in the Dyson equation, for finding the
interacting single-particle Green's function. This scheme is then implemented
numerically by a parallelized code. We exploit this approach to study the
correlation propagation after a quench in the interaction parameter, for one
(1D) and two (2D) dimensions. In particular, we show how our approach is able
to recover the crossover from ballistic to diffusive regime by increasing the
boson-boson interaction. Finally we also discuss the role of a thermal initial
state on the dynamics both for 1D and 2D Bose Hubbard models, finding that
surprisingly at high temperature a ballistic evolution is restored.Comment: 13 figure
Wavevector-dependent spin filtering and spin transport through magnetic barriers in graphene
We study the spin-resolved transport through magnetic nanostructures in monolayer and bilayer graphene. We take into account both the orbital effect of the inhomogeneous perpendicular magnetic field as well as the in-plane spin splitting due to the Zeeman interaction and to the exchange coupling possibly induced by the proximity of a ferromagnetic insulator. We find that a single barrier exhibits a wavevector-dependent spin filtering effect at energies close to the transmission threshold. This effect is significantly enhanced in a resonant double barrier configuration, where the spin polarization of the outgoing current can be increased up to 100% by increasing the distance between the barriers
Pair condensation of polarized fermions in the BCS-BEC crossover
We investigate a two-component Fermi gas with unequal spin populations along
the BCS-BEC crossover. By using the extended BCS equations and the concept of
off-diagonal-long-range-order we derive a formula for the condensate number of
Cooper pairs as a function of energy gap, average chemical potential, imbalance
chemical potential and temperature. Then we study the zero-temperature
condensate fraction of Cooper pairs by varying interaction strength and
polarization, finding a depletion of the condensate fraction by increasing the
population imbalance. We also consider explicitly the presence of an external
harmonic confinement and we study, within the local-density approximation, the
phase separation between superfluid and normal phase regions of the polarized
fermionic cloud. In particular, we calculate both condensate density profiles
and total density profiles from the inner superfluid core to the normal region
passing for the interface, where a finite jump in the density is a clear
manifestation of this phase-separated regime. Finally, we compare our
theoretical results with the available experimental data on the condensate
fraction of polarized 6Li atoms [Science 311, 492 (2006)]. These experimental
data are in reasonable agreement with our predictions in a suitable range of
polarizations, but only in the BCS side of the crossover up to unitarity.Comment: 13 pages, 3 figures, improved version, added a section on the
interpretation of the results, to be published in J. Phys.
Entanglement entropy and macroscopic quantum states with dipolar bosons in a triple-well potential
We study interacting dipolar atomic bosons in a triple-well potential within
a ring geometry. This system is shown to be equivalent to a three-site
Bose-Hubbard model. We analyze the ground state of dipolar bosons by varying
the effective on-site interaction. This analysis is performed both numerically
and analytically by using suitable coherent-state representations of the ground
state. The latter exhibits a variety of forms ranging from the su(3) coherent
state in the delocalization regime to a macroscopic cat-like state with fully
localized populations, passing for a coexistence regime where the ground state
displays a mixed character. We characterize the quantum correlations of the
ground state from the bi-partition perspective. We calculate both numerically
and analytically (within the previous coherent-state representation) the
single-site entanglement entropy which, among various interesting properties,
exhibits a maximum value in correspondence to the transition from the cat-like
to the coexistence regime. In the latter case, we show that the ground-state
mixed form corresponds, semiclassically, to an energy exhibiting two
almost-degenerate minima.Comment: 9 pages, 2 figure
Magnetic confinement of massless Dirac fermions in graphene
Due to Klein tunneling, electrostatic potentials are unable to confine Dirac
electrons. We show that it is possible to confine massless Dirac fermions in a
monolayer graphene sheet by inhomogeneous magnetic fields. This allows one to
design mesoscopic structures in graphene by magnetic barriers, e.g. quantum
dots or quantum point contacts.Comment: 4 pages, 3 figures, version to appear in PR
From Klein to anti-Klein tunneling in graphene tuning the Rashba spin-orbit interaction or the bilayer coupling
We calculate the transmission coefficient for a particle crossing a potential
barrier in monolayer graphene with Rashba spin-orbit coupling and in bilayer
graphene. We show that in both the cases one can go from Klein tunneling
regime, characterized by perfect normal transmission, to anti-Klein tunneling
regime, with perfect normal reflection, by tuning the Rashba spin-orbit
coupling for a monolayer or the interplane coupling for a bilayer graphene. We
show that the intermediate regime is characterized by a non-monotonic behavior
with oscillations and resonances in the normal transmission amplitude as a
function of the coupling and of the potential parameters.Comment: 9 pages, 5 figure
Quasi-particle dephasing time in disordered d-wave superconductors
We evaluate the low-temperature cutoff for quantum interference 1/tf induced
in a d-wave superconductor by the diffusion enhanced quasiparticle interactions
in the presence of disorder. We carry out our analysis in the framework of the
non-linear sigma-model which allows a direct calculation of 1/tf, as the mass
of the transverse modes of the theory. Only the triplet amplitude in the
particle-hole channel and the Cooper amplitude with is pairing symmetry
contribute to 1/tf. We discuss the possible relevance of our results to the
present disagreement between thermal transport data in cuprates and the
localization theory for d-wave quasiparticles
- …