1,980 research outputs found
Preface: Multiscale and multiphysics modeling of “complex” materials and engineering applications
none3noN.A.mixedTrovalusci P.; Fantuzzi N.; De Bellis M.L.Trovalusci P.; Fantuzzi N.; De Bellis M.L
Homozygous mutation in the prokineticin-receptor2 gene (Val274Asp) presenting as reversible Kallmann syndrome and persistent oligozoospermia: case report.
Prokineticin 2 (Prok2) or prokineticin-receptor2 (Prok-R2) gene mutations are associated with Kallmann syndrome
(KS). We describe a new homozygous mutation of Prok-R2 gene in a man displaying KS with an apparent reversal of
hypogonadism. The proband, offspring of consanguineous parents, presented at age 19 years with absent puberty, no
sense of smell, low testosterone and gonadotrophin levels. Magnetic resonance imaging showed olfactory bulb absence.
The patient achieved virilization and spermatogenesis with gonadotrophin administration. Two years after discontinuing
hormonal therapy, he maintained moderate oligozoospermia and normal testosterone levels. Prok2 and Prok-
R2 gene sequence analyses were performed. The proband had a homozygous mutation in Prok-R2 exon 2 that harbours
the c.T820>A base substitution, causing the introduction of an aspartic acid in place of valine at position 274
(Val274Asp). His mother had the same mutation in heterozygous state. This report describes a novel homozygous
mutation of Prok-R2 gene in a man with variant KS, underlying the role of Prok-R2 gene in the olfactory and reproductive
system development in humans. Present findings indicate that markedly delayed activation of gonadotrophin
secretion may occur in some KS cases with definite gene defects, and that oligozoospermia might result from a variant
form of reversible hypogonadotrophic hypogonadism
A numerical model of the human cornea accounting for the fiber-distributed collagen microstructure
We present a fiber-distributed model of the reinforcing collagen of the human cornea. The model describes the basic connections between the components of the tissue by defining an elementary block (cell) and upscaling it to the physical size of the cornea. The cell is defined by two sets of collagen fibrils running in approximately orthogonal directions, characterized by a random distribution of the spatial orientation and connected by chemical bonds of two kinds. The bonds of the first kind describe the lamellar crosslinks, forming the ribbon-like lamellae; while the bonds of the second kind describe the stacking crosslinks, piling up the lamellae to form the structure of the stroma. The spatial replication of the cell produces a truss structure with a considerable number of degrees of freedom. The statistical characterization of the collagen fibrils leads to a mechanical model that reacts to the action of the deterministic intraocular pressure with a stochastic distribution of the displacements, here characterized by their mean value and variance. The strategy to address the solution of the heavy resulting numerical problem is to use the so-called stochastic finite element improved perturbation method combined with a fully explicit solver. Results demonstrate that the variability of the mechanical properties affects in a non-negligible manner the expected response of the structure to the physiological action
Is your EPL attractive? Classification of publications through download statistics
Here we consider the download statistics of EPL publications. We find that
papers in the journal are characterised by fast accumulations of downloads
during the first couple of months after publication, followed by slower rates
thereafter, behaviour which can be represented by a model with predictive
power. We also find that individual papers can be classified in various ways,
allowing us to compare categories for open-access and non-open-access papers.
For example, for the latter publications, which comprise the bulk of EPL
papers, a small proportion (2%) display intense bursts of download activity,
possibly following an extended period of less remarkable behaviour. About 18%
have an especially high degree of attractiveness over and above what is typical
for the journal. One can also classify the ageing of attractiveness by
examining download half-lives. Approximately 18% have strong interest
initially, waning in time. A further 20% exhibit "delayed recognition" with
relatively late spurs in download activity. Although open-access papers enjoy
more downloads on average, the proportions falling into each category are
similar.Comment: 6 pages, 8 figures, accepted for publication in EP
Molecular responses to cadmium exposure in two contrasting durum wheat genotypes
Cadmium is a heavy metal that can be easily accumulated in durum wheat kernels and enter the human food chain. Two near-isogenic lines (NILs) with contrasting cadmium accumulation in grains, High-Cd or Low-Cd (H-Cd NIL and L-Cd NIL, respectively), were used to understand the Cd accumulation and transport mechanisms in durum wheat roots. Plants were cultivated in hydroponic solution, and cadmium concentrations in roots, shoots and grains were quantified. To evaluate the molecular mechanism activated in the two NILs, the transcriptomes of roots were analyzed. The observed response is complex and involves many genes and molecular mechanisms. We found that the gene sequences of two basic helix–loop–helix (bHLH) transcription factors (bHLH29 and bHLH38) differ between the two genotypes. In addition, the transporter Heavy Metal Tolerance 1 (HMT-1) is expressed only in the low-Cd genotype and many peroxidase genes are up-regulated only in the L-Cd NIL, suggesting ROS scavenging and root lignification as active responses to cadmium presence. Finally, we hypothesize that some aquaporins could enhance the Cd translocation from roots to shoots. The response to cadmium in durum wheat is therefore extremely complex and involves transcription factors, chelators, heavy metal transporters, peroxidases and aquaporins. All these new findings could help to elucidate the cadmium tolerance in wheat and address future breeding programs
Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves
Stinging nettle (Urtica dioica) is a plant well known in traditional medicine for its many beneficial properties, but the lack of standardization regarding the product to offer to consumers limits its diffusion. To this end, drying appears to be a useful technique to offer a low-cost product that can be stored for long time, but the different drying procedures may give rise to end-products of very different quality as nutraceutical and antioxidant compounds. Nettle leaves have been dehydrated employing freeze-drying (FD), oven-drying (OD) or heat pump drying (HPD) and compared with fresh leaves following water extraction to emulate the use by final consumers. Results indicate that the best dehydration technique is HPD, which apparently gives rise to more than a doubling of total phenols and antioxidant activity in the extract compared to the water extract obtained from fresh leaves but a reduction in the level of ascorbic acid of about 39%. In addition, the content of some phenolic compounds is 10 to over a hundred times higher in the extract after HPD than that obtained from fresh samples. This confirms that the dehydration technique should be tuned in relation to the compounds of greatest interest or value
Secondary metabolites in xylella fastidiosa-plant interaction
During their evolutionary history, plants have evolved the ability to synthesize and accumulate small molecules known as secondary metabolites. These compounds are not essential in the primary cell functions but play a significant role in the plants’ adaptation to environmental changes and in overcoming stress. Their high concentrations may contribute to the resistance of the plants to the bacterium Xylella fastidiosa, which has recently re‐emerged as a plant pathogen of global importance. Although it is established in several areas globally and is considered one of the most dangerous plant pathogens, no cure has been developed due to the lack of effective bactericides and the difficulties in accessing the xylem vessels where the pathogen grows and produces cell aggregates and biofilm. This review highlights the role of secondary metabolites in the defense of the main economic hosts of X. fastidiosa and identifies how knowledge about biosynthetic pathways could improve our understanding of disease resistance. In addition, current developments in non-invasive techniques and strategies of combining molecular and physiological techniques are examined, in an attempt to identify new metabolic engineering options for plant defense
Research Trends on Greenhouse Engineering Using a Science Mapping Approach
Horticultural protected cultivation has spread throughout the world as it has proven to be extremely effective. In recent years, the greenhouse engineering research field has become one of the main research topics within greenhouse farming. The main objectives of the current study were to identify the major research topics and their trends during the last four decades by analyzing the co-occurrence network of keywords associated with greenhouse engineering publications. A total of 3804 pertinent documents published, in 1981-2021, were analyzed and discussed. China, the United States, Spain, Italy and the Netherlands have been the most active countries with more than 36% of the relevant literature. The keyword cluster analysis suggested the presence of five principal research topics: energy management and storage; monitoring and control of greenhouse climate parameters; automation of greenhouse operations through the internet of things (IoT) and wireless sensor network (WSN) applications; greenhouse covering materials and microclimate optimization in relation to plant growth; structural and functional design for improving greenhouse stability, ventilation and microclimate. Recent research trends are focused on real-time monitoring and automatic control systems based on the IoT and WSN technologies, multi-objective optimization approaches for greenhouse climate control, efficient artificial lighting and sustainable greenhouse crop cultivation using renewable energy
Algorithm for automatic genotype calling of single nucleotide polymorphisms using the full course of TaqMan real-time data
Single nucleotide polymorphisms (SNPs) are often determined using TaqMan real-time PCR assays (Applied Biosystems) and commercial software that assigns genotypes based on reporter probe signals at the end of amplification. Limitations to the large-scale application of this approach include the need for positive controls or operator intervention to set signal thresholds when one allele is rare. In the interest of optimizing real-time PCR genotyping, we developed an algorithm for automatic genotype calling based on the full course of real-time PCR data. Best cycle genotyping algorithm (BCGA), written in the open source language R, is based on the assumptions that classification depends on the time (cycle) of amplification and that it is possible to identify a best discriminating cycle for each SNP assay. The algorithm is unique in that it classifies samples according to the behavior of blanks (no DNA samples), which cluster with heterozygous samples. This method of classification eliminates the need for positive controls and permits accurate genotyping even in the absence of a genotype class, for example when one allele is rare. Here, we describe the algorithm and test its validity, compared to the standard end-point method and to DNA sequencing
- …