6,183 research outputs found

    Inclusion of new LHC data in MMHT PDFs

    Get PDF
    I consider the effects of including a variety of new LHC data sets into the MMHT approach for PDF determination. I consider the impact of fitting new LHC and Tevatron data, which leads to clear improvements in some PDF uncertainties. There are specific issues with ATLAS 7 TeV jet data and I include a discussion of the treatment of correlated uncertainties and briefly the effects of NNLO corrections. I also present preliminary results with the inclusion of the high precison final ATLAS 7 TeV W,ZW,Z rapidity-dependent data.Comment: 6 pages. To appear in proceedings of DIS2017 Worksho

    Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma

    Full text link
    We study the conductivity and shear viscosity tensors of a strongly coupled N=4 super-Yang-Mills plasma which is kept anisotropic by a theta parameter that depends linearly on one of the spatial dimensions. Its holographic dual is given by an anisotropic axion-dilaton-gravity background and has recently been proposed by Mateos and Trancanelli as a model for the pre-equilibrium stage of quark-gluon plasma in heavy-ion collisions. By applying the membrane paradigm which we also check by numerical evaluation of Kubo formula and lowest lying quasinormal modes, we find that the shear viscosity purely transverse to the direction of anisotropy saturates the holographic viscosity bound, whereas longitudinal shear viscosities are smaller, providing the first such example not involving higher-derivative theories of gravity and, more importantly, with fully known gauge-gravity correspondence.Comment: 4 pages, 2 figures; v3: references added, version to appear in Phys. Rev. Let

    Updates of PDFs in the MSTW framework

    Full text link
    I present results on updates on PDFs which are obtained within the general framework which led to the MSTW2008 PDF sets. There are some theory and procedural improvements and a variety of new data sets, including many relevant up-to-date LHC data. A new set of PDFs is very close to being finalised, with no significant changes expected to the preliminary PDFs shown here.Comment: 6 pages, 6 figures,Published in PoS DIS (2014

    Analytic Solutions to the Constraint Equation for a Force-Free Magnetosphere around a Kerr Black Hole

    Full text link
    The Blandford-Znajek constraint equation for a stationary, axisymmetric black-hole force-free magnetosphere is cast in a 3+1 absolute space and time formulation, following Komissarov (2004). We derive an analytic solution for fields and currents to the constraint equation in the far-field limit that satisfies the Znajek condition at the event horizon. This solution generalizes the Blandford-Znajek monopole solution for a slowly rotating black hole to black holes with arbitrary angular momentum. Energy and angular momentum extraction through this solution occurs mostly along the equatorial plane. We also present a nonphysical, reverse jet-like solution.Comment: 6 pages, accepted for publication in Ap

    Components of the gravitational force in the field of a gravitational wave

    Full text link
    Gravitational waves bring about the relative motion of free test masses. The detailed knowledge of this motion is important conceptually and practically, because the mirrors of laser interferometric detectors of gravitational waves are essentially free test masses. There exists an analogy between the motion of free masses in the field of a gravitational wave and the motion of free charges in the field of an electromagnetic wave. In particular, a gravitational wave drives the masses in the plane of the wave-front and also, to a smaller extent, back and forth in the direction of the wave's propagation. To describe this motion, we introduce the notion of `electric' and `magnetic' components of the gravitational force. This analogy is not perfect, but it reflects some important features of the phenomenon. Using different methods, we demonstrate the presence and importance of what we call the `magnetic' component of motion of free masses. It contributes to the variation of distance between a pair of particles. We explicitely derive the full response function of a 2-arm laser interferometer to a gravitational wave of arbitrary polarization. We give a convenient description of the response function in terms of the spin-weighted spherical harmonics. We show that the previously ignored `magnetic' component may provide a correction of up to 10 %, or so, to the usual `electric' component of the response function. The `magnetic' contribution must be taken into account in the data analysis, if the parameters of the radiating system are not to be mis-estimated.Comment: prints to 29 pages including 9 figures, new title, additional explanations and references in response to referee's comments, to be published in Class. Quant. Gra

    The Effect of the LISA Response Function on Observations of Monochromatic Sources

    Full text link
    The Laser Interferometer Space Antenna (LISA) is expected to provide the largest observational sample of binary systems of faint sub-solar mass compact objects, in particular white-dwarfs, whose radiation is monochromatic over most of the LISA observational window. Current astrophysical estimates suggest that the instrument will be able to resolve about 10000 such systems, with a large fraction of them at frequencies above 3 mHz, where the wavelength of gravitational waves becomes comparable to or shorter than the LISA arm-length. This affects the structure of the so-called LISA transfer function which cannot be treated as constant in this frequency range: it introduces characteristic phase and amplitude modulations that depend on the source location in the sky and the emission frequency. Here we investigate the effect of the LISA transfer function on detection and parameter estimation for monochromatic sources. For signal detection we show that filters constructed by approximating the transfer function as a constant (long wavelength approximation) introduce a negligible loss of signal-to-noise ratio -- the fitting factor always exceeds 0.97 -- for f below 10mHz, therefore in a frequency range where one would actually expect the approximation to fail. For parameter estimation, we conclude that in the range 3mHz to 30mHz the errors associated with parameter measurements differ from about 5% up to a factor of 10 (depending on the actual source parameters and emission frequency) with respect to those computed using the long wavelength approximation.Comment: replacement version with typos correcte

    Complex Wave Numbers in the Vicinity of the Schwarzschild Event Horizon

    Full text link
    This paper is devoted to investigate the cold plasma wave properties outside the event horizon of the Schwarzschild planar analogue. The dispersion relations are obtained from the corresponding Fourier analyzed equations for non-rotating and rotating, non-magnetized and magnetized backgrounds. These dispersion relations provide complex wave numbers. The wave numbers are shown in graphs to discuss the nature and behavior of waves and the properties of plasma lying in the vicinity of the Schwarzschild event horizon.Comment: 21 pages, 9 figures, accepted for publication Int. J. Mod. Phys.

    Propagation of gravitational waves from slow motion sources in a Coulomb type potential

    Get PDF
    We consider the propagation of gravitational waves generated by slow motion sources in Coulomb type potential due to the mass of the source. Then, the formula for gravitational waveform including tail is obtained in a straightforward manner by using the spherical Coulomb function. We discuss its relation with the formula in the previous work.Comment: 13 pages, no figures, to be published in Phys. Rev.

    Relativistic Stellar Pulsations With Near-Zone Boundary Conditions

    Get PDF
    A new method is presented here for evaluating approximately the pulsation modes of relativistic stellar models. This approximation relies on the fact that gravitational radiation influences these modes only on timescales that are much longer than the basic hydrodynamic timescale of the system. This makes it possible to impose the boundary conditions on the gravitational potentials at the surface of the star rather than in the asymptotic wave zone of the gravitational field. This approximation is tested here by predicting the frequencies of the outgoing non-radial hydrodynamic modes of non-rotating stars. The real parts of the frequencies are determined with an accuracy that is better than our knowledge of the exact frequencies (about 0.01%) except in the most relativistic models where it decreases to about 0.1%. The imaginary parts of the frequencies are determined with an accuracy of approximately M/R, where M is the mass and R is the radius of the star in question.Comment: 10 pages (REVTeX 3.1), 5 figs., 1 table, fixed minor typos, published in Phys. Rev. D 56, 2118 (1997

    Matched-filtering and parameter estimation of ringdown waveforms

    Get PDF
    Using recent results from numerical relativity simulations of non-spinning binary black hole mergers we revisit the problem of detecting ringdown waveforms and of estimating the source parameters, considering both LISA and Earth-based interferometers. We find that Advanced LIGO and EGO could detect intermediate-mass black holes of mass up to about 1000 solar masses out to a luminosity distance of a few Gpc. For typical multipolar energy distributions, we show that the single-mode ringdown templates presently used for ringdown searches in the LIGO data stream can produce a significant event loss (> 10% for all detectors in a large interval of black hole masses) and very large parameter estimation errors on the black hole's mass and spin. We estimate that more than 10^6 templates would be needed for a single-stage multi-mode search. Therefore, we recommend a "two stage" search to save on computational costs: single-mode templates can be used for detection, but multi-mode templates or Prony methods should be used to estimate parameters once a detection has been made. We update estimates of the critical signal-to-noise ratio required to test the hypothesis that two or more modes are present in the signal and to resolve their frequencies, showing that second-generation Earth-based detectors and LISA have the potential to perform no-hair tests.Comment: 19 pages, 9 figures, matches version in press in PR
    • …
    corecore