1,199 research outputs found

    Contribution of Extragalactic Infrared Sources to CMB Foreground Anisotropy

    Full text link
    We estimate the level of confusion to Cosmic Microwave Background anisotropy measurements caused by extragalactic infrared sources. CMB anisotropy observations at high resolution and high frequencies are especially sensitive to this foreground. We use data from the COBE satellite to generate a Galactic emission spectrum covering mm and sub-mm wavelengths. Using this spectrum as a template, we predict the microwave emission of the 5319 brightest infrared galaxies seen by IRAS. We simulate skymaps over the relevant range of frequencies (30-900 GHz) and instrument resolutions (10'-10 degrees Full Width Half Max). Analysis of the temperature anisotropy of these skymaps shows that a reasonable observational window is available for CMB anisotropy measurements.Comment: 14 pages (LaTex source), 3 PostScript figures. Final version, to appear in ApJLetters May 1. Expanded discussion of systematic error

    The Planck Surveyor mission: astrophysical prospects

    Get PDF
    Although the Planck Surveyor mission is optimized to map the cosmic microwave background anisotropies, it will also provide extremely valuable information on astrophysical phenomena. We review our present understanding of Galactic and extragalactic foregrounds relevant to the mission and discuss on one side, Planck's impact on the study of their properties and, on the other side, to what extent foreground contamination may affect Planck's ability to accurately determine cosmological parameters. Planck's multifrequency surveys will be unique in their coverage of large areas of the sky (actually, of the full sky); this will extend by two or more orders of magnitude the flux density interval over which mm/sub-mm counts of extragalactic sources can be determined by instruments already available (like SCUBA) or planned for the next decade (like the LSA-MMA or the space mission FIRST), which go much deeper but over very limited areas. Planck will thus provide essential complementary information on the epoch-dependent luminosity functions. Bright radio sources will be studied over a poorly explored frequency range where spectral signatures, essential to understand the physical processes that are going on, show up. The Sunyaev-Zeldovich effect, with its extremely rich information content, will be observed in the direction of a large number of rich clusters of Galaxies. Thanks again to its all sky coverage, Planck will provide unique information on the structure and on the emission properties of the interstellar medium in the Galaxy. At the same time, the foregrounds are unlikely to substantially limit Planck's ability to measure the cosmological signals. Even measurements of polarization of the primordial Cosmic Microwave background fluctuations appear to be feasible.Comment: 20 pages, Latex (use aipproc2.sty, aipproc2.cls, epsfig.sty), 10 PostScript figures; invited review talk, Proc. of the Conference: "3 K Cosmology", Roma, Italy, 5-10 October 1998, AIP Conference Proc, in press Note: Figures 6 and 7 have been replaced by new and correct version

    Density Perturbations of Quantum Mechanical Origin and Anisotropy of the Microwave Background

    Full text link
    If the large-angular-scale anisotropy in the cosmic microwave background radiation is caused by the long-wavelength cosmological perturbations of quantum mechanical origin, they are, most likely, gravitational waves, rather than density perturbations or rotational perturbations.Comment: 53 pages, RevTeX, WUGRAV-94-4, (Received by Phys. Rev. D on March 17, 1994

    Primordial Gravity Waves and Weak Lensing

    Full text link
    Inflation produces a primordial spectrum of gravity waves in addition to the density perturbations which seed structure formation. We compute the signature of these gravity waves in the large scale shear field. In particular, the shear can be divided into a gradient mode (G or E) and a curl mode (C or B). The former is produced by both density perturbations and gravity waves, while the latter is produced only by gravity waves, so the observations of a non-zero curl mode could be seen as evidence for inflation. We find that the expected signal from inflation is small, peaking on the largest scales at l(l+1)Cl/2π<1011l(l+1)C_l/2\pi < 10^{-11} at l=2l=2 and falling rapidly there after. Even for an all-sky deep survey, this signal would be below noise at all multipoles. Part of the reason for the smallness of the signal is a cancellation on large scales of the standard line-of-sight effect and the effect of ``metric shear.''Comment: 4 pages, 1 figur

    An Exact Calculation of the Energy Density of Cosmological Gravitational Waves

    Get PDF
    In this paper we calculate the Bogoliubov coefficients and the energy density of the stochastic gravitational wave background for a universe that undergoes inflation followed by radiation domination and matter domination, using a formalism that gives the Bogoliubov coefficients as continous functions of time. By making a reasonable assumption for the equation of state during reheating, we obtain in a natural way the expected high frequency cutoff in the spectral energy density.Comment: 12 pages+5 figures, uuencoded file,DF/IST-2.9

    The Doppler Peaks from Cosmic Texture

    Get PDF
    We compute the angular power spectrum of temperature anisotropies on the microwave sky in the cosmic texture theory, with standard recombination assumed. The spectrum shows `Doppler' peaks analogous to those in scenarios based on primordial adiabatic fluctuations such as `standard CDM', but at quite different angular scales. There appear to be excellent prospects for using this as a discriminant between inflationary and cosmic defect theories.Comment: 14 pages, latex, 3 figures, compressed and uuencoded, replaced version has minor typographical correction

    Neutrino-Lasing in The Early Universe

    Full text link
    Recently, Madsen has argued that relativistic decays of massive neutrinos into lighter fermions and bosons may lead, via thermalization, to the formation of a Bose condensate. If correct, this could generate mixed hot and cold dark matter, with important consequences for structure formation. From a detailed study of such decays, we arrive at substantially different conclusions; for a wide range of masses and decay times, we find that stimulated emission of bosons dominates the decay. This phenomenon can best be described as a neutrino laser, pumped by the QCD phase transition. We discuss the implications for structure formation and the dark-matter problem.Comment: 7 pages, 3 figures included as uuencoded file, CITA/93/

    Random and Correlated Phases of Primordial Gravitaional Waves

    Full text link
    The phases of primordial gravity waves is analysed in detail within a quantum mechanical context following the formalism developed by Grishchuk and Sidorov. It is found that for physically relevant wavelengths both the phase of each individual mode and the phase {\it difference} between modes are randomly distributed. The phase {\it sum} between modes with oppositely directed wave-vectors, however, is not random and takes on a definite value with no rms fluctuation. The conventional point of view that primordial gravity waves appear after inflation as a classical, random stochastic background is also addressed.Comment: 14 pages, written in REVTE

    Experiment for Testing Special Relativity Theory

    Full text link
    An experiment aimed at testing special relativity via a comparison of the velocity of a non matter particle (annihilation photon) with the velocity of the matter particle (Compton electron) produced by the second annihilation photon from the decay Na-22(beta^+)Ne-22 is proposed.Comment: 7 pages, 1 figure, Report on the Conference of Nuclear Physics Division of Russian Academy of Science "Physics of Fundamental Interactions", ITEP, Moscow, November 26-30, 200
    corecore