5,798 research outputs found

    A constrained random-force model for weakly bending semiflexible polymers

    Full text link
    The random-force (Larkin) model of a directed elastic string subject to quenched random forces in the transverse directions has been a paradigm in the statistical physics of disordered systems. In this brief note, we investigate a modified version of the above model where the total transverse force along the polymer contour and the related total torque, in each realization of disorder, vanish. We discuss the merits of adding these constraints and show that they leave the qualitative behavior in the strong stretching regime unchanged, but they reduce the effects of the random force by significant numerical prefactors. We also show that a transverse random force effectively makes the filament softer to compression by inducing undulations. We calculate the related linear compression coefficient in both the usual and the constrained random force model.Comment: 4 pages, 1 figure, accepted for publication in PR

    The Trapped Polarized Fermi Gas at Unitarity

    Full text link
    We consider population-imbalanced two-component Fermi gases under external harmonic confinement interacting through short-range two-body potentials with diverging s-wave scattering length. Using the fixed-node diffusion Monte Carlo method, the energies of the "normal state" are determined as functions of the population-imbalance and the number of particles. The energies of the trapped system follow, to a good approximation, a universal curve even for fairly small systems. A simple parameterization of the universal curve is presented and related to the equation of state of the bulk system.Comment: 4 pages, 2 tables, 2 figure

    Conventional and charge six superfluids from melting hexagonal Fulde-Ferrell-Larkin-Ovchinnikov phases in two dimensions

    Full text link
    We consider defect mediated melting of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and pair density wave (PDW) phases in two dimensions. Examining mean-field ground states in which the spatial oscillations of the FFLO/PDW superfluid order parameter exhibit hexagonal lattice symmetry, we find that thermal melting leads to a variety of novel phases. We find that a spatially homogeneous charge six superfluid can arise from melting a hexagonal vortex-anitvortex lattice FFLO/PDW phase. The charge six superfluid has an order parameter corresponding to a bound state of six fermions. We further find that a hexagonal vortex-free FFLO/PDW phase can melt to yield a conventional (charge two) homogeneous superfluid. A key role is played by topological defects that combine fractional vortices of the superfluid order and fractional dislocations of the lattice order.Comment: 8 pages, 3 figure

    Vortex Viscosity in Magnetic Superconductors Due to Radiation of Spin Waves

    Full text link
    In type-II superconductors that contain a lattice of magnetic moments, vortices polarize the magnetic system inducing additional contributions to the vortex mass, vortex viscosity, and vortex-vortex interaction. Extra magnetic viscosity is caused by radiation of spin waves by a moving vortex. Like in the case of Cherenkov radiation, this effect has a characteristic threshold behavior and the resulting vortex viscosity may be comparable to the well-known Bardeen-Stephen contribution. The threshold behavior leads to an anomaly in the current-voltage characteristics, and a drop in dissipation for a current interval that is determined by the magnetic excitation spectrum.Comment: 4 pages, 1 figur

    Oscillations of magnetization and conductivity in anisotropic Fulde-Ferrell-Larkin-Ovchinnikov superconductors

    Full text link
    We derive the fluctuational magnetization and the paraconductivity of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductors in their normal state. The FFLO superconducting fluctuations induce oscillations of the magnetization between diamagnetism and unusual paramagnetism which originates from the competition between paramagnetic and orbital effects. We also predict a strong anisotropy of the paraconductivity when the FFLO transition is approached in contrast with the case of a uniform BCS state. Finally building a Ginzburg-Levanyuk argument, we demonstrate that these fluctuation effects can be safely treated within the Gaussian approximation since the critical fluctuations are proeminent only within an experimentally inaccessible temperature interval

    A Double Hurdle Model of Preferences for a Proposed Capacity Reduction Program in the Atlantic Shark Fishery

    Get PDF
    The Atlantic shark fishery is considered to be overcapitalized. One approach to capacity management is the purchase and permanent retirement of fishing vessels, fishing permits, or both under voluntary buyback programs. Representatives of the commercial shark fishery have proposed such an approach to manage the overcapacity in their fishery in the Gulf of Mexico and Atlantic regions. This program would allow owners to submit willingness-to-accept (WTA) bids for their permits and vessels. This study uses econometric modeling to explain the potential participation and bid amounts from a survey of permit owners.Resource /Energy Economics and Policy,

    Spontaneous current generation in the gapless 2SC phase

    Full text link
    It is found that, except chromomagnetic instability, the gapless 2SC phase also exhibits a paramagnetic response to the perturbation of an external color neutral baryon current. The spontaneously generated baryon current driven by the mismatch is equivalent to the one-plane wave LOFF state. We describe the 2SC phase in the nonlinear realization framework, and show that each instability indicates the spontaneous generation of the corresponding pseudo Nambu-Golstone current. We show this Nambu-Goldstone currents generation state covers the gluon phase as well as the one-plane wave LOFF state. We further point out that, when charge neutrality condition is required, there exists a narrow unstable LOFF (Us-LOFF) window, where not only off-diagonal gluons but the diagonal 8-th gluon cannot avoid the magnetic instability. We discuss that the diagonal magnetic instability in this Us-LOFF window cannot be cured by off-diagonal gluon condensate in color superconducting phase, and it will also show up in some constrained Abelian asymmetric superfluid/superconducting system.Comment: 8 pages, no figure, final version to appear in PR

    Josephson effect in thin-film superconductor/insulator/superconductor junctions with misaligned in-plane magnetic fields

    Full text link
    We study a tunnel junction consisting of two thin-film s-wave superconductors separated by a thin, insulating barrier in the presence of misaligned in-plane exchange fields. We find an interesting interplay between the superconducting phase difference and the relative orientation of the exchange fields, manifested in the Josephson current across the junction. Specifically, this may be written IJC=(I0+Im cosϕ)sinΔθI_\text{J}^\text{C} = (I_0+I_m ~ \cos\phi) \sin\Delta\theta, where I_0 and I_m are constants, and ϕ\phi is the relative orientation of the exchange fields while Δθ\Delta\theta is the superconducting phase difference. Similar results have recently been obtained in other S/I/S junctions coexisting with helimagnetic or ferromagnetic order. We calculate the superconducting order parameter self-consistently, and investigate quantitatively the effect which the misaligned exchange fields constitute on the Josephson current, to see if I_m may have an appreciable effect on the Josephson current. It is found that I_0 and I_m become comparable in magnitude at sufficiently low temperatures and fields close to the critical value, in agreement with previous work. From our analytical results, it then follows that the Josephson current in the present system may be controlled in a well-defined manner by a rotation of the exchange fields on both sides of the junction. We discuss a possible experimental realization of this proposition.Comment: 8 pages, 8 figures. Accepted for publication in Phys. Rev.

    Criticality in inhomogeneous magnetic systems: Application to quantum ferromagnets

    Full text link
    We consider a ϕ4\phi^4-theory with a position-dependent distance from the critical point. One realization of this model is a classical ferromagnet subject to non-uniform mechanical stress. We find a sharp phase transition where the envelope of the local magnetization vanishes uniformly. The first-order transition in a quantum ferromagnet also remains sharp. The universal mechanism leading to a tricritical point in an itinerant quantum ferromagnet is suppressed, and in principle one can recover a quantum critical point with mean-field exponents. Observable consequences of these results are discussed.Comment: 4pp, 4 eps figs, contains additional information compared to PRL version. PRl, in pres

    Superfluid phases of triplet pairing and neutrino emission from neutron stars

    Full text link
    Neutrino energy losses through neutral weak currents in the triplet-spin superfluid neutron liquid are studied for the case of condensate involving several magnetic quantum numbers. Low-energy excitations of the multicomponent condensate in the timelike domain of the energy and momentum are analyzed. Along with the well-known excitations in the form of broken Cooper pairs, the theoretical analysis predicts the existence of collective waves of spin density at very low energy. Because of a rather small excitation energy of spin waves, their decay leads to a substantial neutrino emission at the lowest temperatures, when all other mechanisms of neutrino energy loss are killed by a superfluidity. Neutrino energy losses caused by the pair recombination and spin-wave decays are examined in all of the multicomponent phases that might represent the ground state of the condensate, according to modern theories, and for the case when a phase transition occurs in the condensate at some temperature. Our estimate predicts a sharp increase in the neutrino energy losses followed by a decrease, along with a decrease in the temperature, that takes place more rapidly than it would without the phase transition. We demonstrate the important role of the neutrino radiation caused by the decay of spin waves in the cooling of neutron stars.Comment: 24 pages, 5 figure
    corecore