107 research outputs found

    Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots

    Full text link
    We report on the impulsive generation of coherent optical phonons in CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump probe experiments using femtosecond laser pulses were performed by tuning the laser central energy to resonate with the absorption edge of the nanocrystals. We identify two longitudinal optical phonons, one longitudinal acoustic phonon and a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the optical phonons as a function of the laser central energy exhibits a resonance that is well described by a model based on impulsive stimulated Raman scattering. The phases of the coherent phonons reveal coupling between different modes. At low power density excitations, the frequency of the optical coherent phonons deviates from values obtained from spontaneous Raman scattering. This behavior is ascribed to the presence of electronic impurity states which modify the nanocrystal dielectric function and, thereby, the frequency of the infrared-active phonons

    Speckle-free laser imaging

    Full text link
    Many imaging applications require increasingly bright illumination sources, motivating the replacement of conventional thermal light sources with light emitting diodes (LEDs), superluminescent diodes (SLDs) and lasers. Despite their brightness, lasers and SLDs are poorly suited for full-field imaging applications because their high spatial coherence leads to coherent artifacts known as speckle that corrupt image formation. We recently demonstrated that random lasers can be engineered to provide low spatial coherence. Here, we exploit the low spatial coherence of specifically-designed random lasers to perform speckle-free full-field imaging in the setting of significant optical scattering. We quantitatively demonstrate that images generated with random laser illumination exhibit higher resolution than images generated with spatially coherent illumination. By providing intense laser illumination without the drawback of coherent artifacts, random lasers are well suited for a host of full-field imaging applications from full-field microscopy to digital light projector systems.Comment: 5 pages, 4 figure

    Ultrafast Coherent Spectroscopy

    Full text link

    Immuno-metabolic profile of patients with psychotic disorders and metabolic syndrome. Results from the FACE-SZ cohort

    Get PDF
    Background: Metabolic syndrome (MetS) is a highly prevalent and harmful medical disorder often comorbid with psychosis where it can contribute to cardiovascular complications. As immune dysfunction is a key shared component of both MetS and schizophrenia (SZ), this study investigated the relationship between immune alterations and MetS in patients with SZ, whilst controlling the impact of confounding clinical characteristics including psychiatric symptoms and comorbidities, history of childhood maltreatment and psychotropic treatments. Method: A total of 310 patients meeting DSM-IV criteria for SZ or schizoaffective disorders (SZA), with or without MetS, were systematically assessed and included in the FondaMental Advanced Centers of Expertise for Schizophrenia (FACE-SZ) cohort. Detailed clinical characteristics of patients, including psychotic symptomatology, psychiatric comorbidities and history of childhood maltreatment were recorded and the serum levels of 18 cytokines were measured. A penalized regression method was performed to analyze associations between inflammation and MetS, whilst controlling for confounding factors. Results: Of the total sample, 25% of patients had MetS. Eight cytokines were above the lower limit of detection (LLOD) in more than 90% of the samples and retained in downstream analysis. Using a conservative Variable Inclusion Probability (VIP) of 75%, we found that elevated levels of interleukin (IL)-6, IL-7, IL-12/23 p40 and IL-16 and lower levels of tumor necrosis factor (TNF)-α were associated with MetS. As for clinical variables, age, sex, body mass index (BMI), diagnosis of SZ (not SZA), age at the first episode of psychosis (FEP), alcohol abuse, current tobacco smoking, and treatment with antidepressants and anxiolytics were all associated with MetS. Conclusion: We have identified five cytokines associated with MetS in SZ suggesting that patients with psychotic disorders and MetS are characterized by a specific “immuno-metabolic” profile. This may help to design tailored treatments for this subgroup of patients with both psychotic disorders and MetS, taking one more step towards precision medicine in psychiatry. © 2022 The AuthorsImmuno-Génétique, Inflammation, retro-Virus, Environnement : de l'étiopathogénie des troubles psychotiques aux modèles animauxRéseau d'Innovation sur les Voies de Signalisation en Sciences de la Vi

    Ultrafast coherent spectroscopy

    Full text link

    Electroporatic delivery of TGF-beta1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice

    Get PDF
    Electrical stimulation (ES) is a therapeutic treatment for wound healing. Electroporation, a type of ES, is a well-established method for gene delivery. We hypothesize that proper conditions can be found with which both electrical and gene therapies can be additively applied to treat diabetic wound healing. For the studies of transforming growth factor-beta1 (TGF-beta1) local expression and therapeutic effects, full thickness excisional wound model of db/db mice was used, we measured TGF-beta1 cytokine level at 24 h postwounding and examined wounds histologically. Furthermore, wound closure was evaluated by wound-area measurements at each day for 14 d. We found that syringe electrodes are more effective than the conventional caliper electrodes. Furthermore, diabetic skin was more sensitive to the electroporative damage than the normal skin. The optimal condition for diabetic skin was six pulses of 100 V per cm for 20 ms. Under such condition, the healing rate of electrically treated wound was significantly accelerated. Furthermore, when TGF-beta1 gene was delivered by electric pulses, the healing rate was further enhanced. Five to seven days postapplication of intradermal injection of plasmid TGF-beta1 followed by electroporation, the wound bed showed an increased reepithelialization rate, collagen synthesis, and angiogenesis. The data indicates that indeed the electric effect and gene effect work synergistic in the genetically diabetic model.link_to_OA_fulltex
    corecore