1,352 research outputs found
Local and nonlocal parallel heat transport in general magnetic fields
A novel approach that enables the study of parallel transport in magnetized
plasmas is presented. The method applies to general magnetic fields with local
or nonlocal parallel closures. Temperature flattening in magnetic islands is
accurately computed. For a wave number , the fattening time scales as
where is the parallel
diffusivity, and () for non-local (local) transport. The
fractal structure of the devil staircase temperature radial profile in weakly
chaotic fields is resolved. In fully chaotic fields, the temperature exhibits
self-similar evolution of the form , where is a
radial coordinate. In the local case, is Gaussian and the scaling is
sub-diffusive, . In the non-local case, decays algebraically,
, and the scaling is diffusive,
Spontaneous Transport Barriers Quench Turbulent Resistivity in 2D MHD
This Letter identifies the physical mechanism for the quench of turbulent
resistivity in 2D MHD. Without an imposed, ordered magnetic field, a
multi-scale, blob-and-barrier structure of magnetic potential forms
spontaneously. Magnetic energy is concentrated in thin, linear barriers,
located at the interstices between blobs. The barriers quench the transport and
kinematic decay of magnetic energy. The local transport bifurcation underlying
barrier formation is linked to the inverse cascade of and
negative resistivity, which induce local bistability. For small scale forcing,
spontaneous layering of the magnetic potential occurs, with barriers located at
the interstices between layers. This structure is effectively a magnetic
staircase
Impulse-induced localized nonlinear modes in an electrical lattice
Intrinsic localized modes, also called discrete breathers, can exist under
certain conditions in one-dimensional nonlinear electrical lattices driven by
external harmonic excitations. In this work, we have studied experimentally the
efectiveness of generic periodic excitations of variable waveform at generating
discrete breathers in such lattices. We have found that this generation
phenomenon is optimally controlled by the impulse transmitted by the external
excitation (time integral over two consecutive zerosComment: 5 pages, 8 figure
Homoclinic Signatures of Dynamical Localization
It is demonstrated that the oscillations in the width of the momentum
distribution of atoms moving in a phase-modulated standing light field, as a
function of the modulation amplitude, are correlated with the variation of the
chaotic layer width in energy of an underlying effective pendulum. The maximum
effect of dynamical localization and the nearly perfect delocalization are
associated with the maxima and minima, respectively, of the chaotic layer
width. It is also demonstrated that kinetic energy is conserved as an almost
adiabatic invariant at the minima of the chaotic layer width, and that the
system is accurately described by delta-kicked rotors at the zeros of the
Bessel functions J_0 and J_1. Numerical calculations of kinetic energy and
Lyapunov exponents confirm all the theoretical predictions.Comment: 7 pages, 4 figures, enlarged versio
- …