2,064 research outputs found
Coordinate Descent with Bandit Sampling
Coordinate descent methods usually minimize a cost function by updating a
random decision variable (corresponding to one coordinate) at a time. Ideally,
we would update the decision variable that yields the largest decrease in the
cost function. However, finding this coordinate would require checking all of
them, which would effectively negate the improvement in computational
tractability that coordinate descent is intended to afford. To address this, we
propose a new adaptive method for selecting a coordinate. First, we find a
lower bound on the amount the cost function decreases when a coordinate is
updated. We then use a multi-armed bandit algorithm to learn which coordinates
result in the largest lower bound by interleaving this learning with
conventional coordinate descent updates except that the coordinate is selected
proportionately to the expected decrease. We show that our approach improves
the convergence of coordinate descent methods both theoretically and
experimentally.Comment: appearing at NeurIPS 201
Observer Placement for Source Localization: The Effect of Budgets and Transmission Variance
When an epidemic spreads in a network, a key question is where was its
source, i.e., the node that started the epidemic. If we know the time at which
various nodes were infected, we can attempt to use this information in order to
identify the source. However, maintaining observer nodes that can provide their
infection time may be costly, and we may have a budget on the number of
observer nodes we can maintain. Moreover, some nodes are more informative than
others due to their location in the network. Hence, a pertinent question
arises: Which nodes should we select as observers in order to maximize the
probability that we can accurately identify the source? Inspired by the simple
setting in which the node-to-node delays in the transmission of the epidemic
are deterministic, we develop a principled approach for addressing the problem
even when transmission delays are random. We show that the optimal
observer-placement differs depending on the variance of the transmission delays
and propose approaches in both low- and high-variance settings. We validate our
methods by comparing them against state-of-the-art observer-placements and show
that, in both settings, our approach identifies the source with higher
accuracy.Comment: Accepted for presentation at the 54th Annual Allerton Conference on
Communication, Control, and Computin
Multiwinner Voting with Fairness Constraints
Multiwinner voting rules are used to select a small representative subset of
candidates or items from a larger set given the preferences of voters. However,
if candidates have sensitive attributes such as gender or ethnicity (when
selecting a committee), or specified types such as political leaning (when
selecting a subset of news items), an algorithm that chooses a subset by
optimizing a multiwinner voting rule may be unbalanced in its selection -- it
may under or over represent a particular gender or political orientation in the
examples above. We introduce an algorithmic framework for multiwinner voting
problems when there is an additional requirement that the selected subset
should be "fair" with respect to a given set of attributes. Our framework
provides the flexibility to (1) specify fairness with respect to multiple,
non-disjoint attributes (e.g., ethnicity and gender) and (2) specify a score
function. We study the computational complexity of this constrained multiwinner
voting problem for monotone and submodular score functions and present several
approximation algorithms and matching hardness of approximation results for
various attribute group structure and types of score functions. We also present
simulations that suggest that adding fairness constraints may not affect the
scores significantly when compared to the unconstrained case.Comment: The conference version of this paper appears in IJCAI-ECAI 201
- …