225 research outputs found
Writhe of center vortices and topological charge -- an explicit example
The manner in which continuum center vortices generate topological charge
density is elucidated using an explicit example. The example vortex
world-surface contains one lone self-intersection point, which contributes a
quantum 1/2 to the topological charge. On the other hand, the surface in
question is orientable and thus must carry global topological charge zero due
to general arguments. Therefore, there must be another contribution, coming
from vortex writhe. The latter is known for the lattice analogue of the example
vortex considered, where it is quite intuitive. For the vortex in the
continuum, including the limit of an infinitely thin vortex, a careful analysis
is performed and it is shown how the contribution to the topological charge
induced by writhe is distributed over the vortex surface.Comment: 33 latex pages, 10 figures incorporating 14 ps files. Furthermore,
the time evolution of the vortex line discussed in this work can be viewed as
a gif movie, available for download by following the PostScript link below --
watch for the cute feature at the self-intersection poin
Decomposition of meron configuration of SU(2) gauge field
For the meron configuration of the SU(2) gauge field in the four dimensional
Minkowskii spacetime, the decomposition into an isovector field \bn,
isoscalar fields and , and a U(1) gauge field is
attained by solving the consistency condition for \bn. The resulting \bn
turns out to possess two singular points, behave like a monopole-antimonopole
pair and reduce to the conventional hedgehog in a special case. The
field also possesses singular points, while and are regular
everywhere.Comment: 18 pages, 5 figures, Sec.4 rewritten. 5 refs. adde
Polyakov loops and spectral properties of the staggered Dirac operator
We study the spectrum of the staggered Dirac operator in SU(2) gauge fields
close to the free limit, for both the fundamental and the adjoint
representation. Numerically we find a characteristic cluster structure with
spacings of adjacent levels separating into three scales. We derive an
analytical formula which explains the emergence of these different spectral
scales. The behavior on the two coarser scales is determined by the lattice
geometry and the Polyakov loops, respectively. Furthermore, we analyze the
spectral statistics on all three scales, comparing to predictions from random
matrix theory.Comment: 11 pages, 25 figures; v2: minor changes, as published in Phys. Rev.
2+1 Dimensional Georgi-Glashow Instantons in Weyl Gauge
Semiclassical instanton solutions in the 3D SU(2) Georgi-Glashow model are
transformed into the Weyl gauge. This illustrates the tunneling interpretation
of these instantons and provides a smooth regularization of the singular
unitary gauge. The 3D Georgi-Glashow model has both instanton and sphaleron
solutions, in contrast to 3D Yang-Mills theory which has neither, and 4D
Yang-Mills theory which has instantons but no sphaleron, and 4D electroweak
theory which has a sphaleron but no instantons. We also discuss the spectral
flow picture of fundamental fermions in a Georgi-Glashow instanton background.Comment: 22 pages, 8 figures, revtex4; v2 - references and comments adde
Species Doublers as Super Multiplets in Lattice Supersymmetry: Exact Supersymmetry with Interactions for D=1 N=2
We propose a new lattice superfield formalism in momentum representation
which accommodates species doublers of the lattice fermions and their bosonic
counterparts as super multiplets. We explicitly show that one dimensional N=2
model with interactions has exact Lie algebraic supersymmetry on the lattice
for all super charges. In coordinate representation the finite difference
operator is made to satisfy Leibnitz rule by introducing a non local product,
the ``star'' product, and the exact lattice supersymmetry is realized. The
standard momentum conservation is replaced on the lattice by the conservation
of the sine of the momentum, which plays a crucial role in the formulation.
Half lattice spacing structure is essential for the one dimensional model and
the lattice supersymmetry transformation can be identified as a half lattice
spacing translation combined with alternating sign structure. Invariance under
finite translations and locality in the continuum limit are explicitly
investigated and shown to be recovered. Supersymmetric Ward identities are
shown to be satisfied at one loop level. Lie algebraic lattice supersymmetry
algebra of this model suggests a close connection with Hopf algebraic exactness
of the link approach formulation of lattice supersymmetry.Comment: 34 pages, 2 figure
Ghost Condensates and Dynamical Breaking of SL(2,R) in Yang-Mills in the Maximal Abelian Gauge
Ghost condensates of dimension two in SU(N) Yang-Mills theory quantized in
the Maximal Abelian Gauge are discussed. These condensates turn out to be
related to the dynamical breaking of the SL(2,R) symmetry present in this gaugeComment: 16 pages, LaTeX2e, final version to appear in J. Phys.
A study of the zero modes of the Faddeev-Popov operator in Euclidean Yang-Mills theories in the Landau gauge in d=2,3,4 dimensions
Examples of normalizable zero modes of the Faddeev-Popov operator in SU(2)
Euclidean Yang-Mills theories in the Landau gauge are constructed in d=2,3,4
dimensions.Comment: 18 pages. Text modifications. References added. Version accepted for
publication in the EPJ
Recommended from our members
Ion-beam mixing and solid-state reaction in Zr-Fe multilayers
Vapor-deposited Zr-Fe multilayered thin films with various wavelengths and of overall composition either 50% Fe or Fe-rich up to 57% Fe were either irradiated with 300 keV Kr ions at temperatures from 25 K to 623 K to fluences up to 2 {times} 10{sup 16} cm{sup {minus}2}, or simply annealed at 773 K in-situ in the Intermediate Voltage Electron microscope At Argonne National Laboratory. Under irradiation, the final reaction product is the amorphous phase in all cases studied, but the dose to amorphization depends on the temperature and on the wavelength. In the purely thermal case (annealing at 773 K), the 50-50 composition produces the amorphous phase but for the Fe-rich multilayers the reaction products depend on the multilayer wavelength. For small wavelength, the amorphous phase is still formed, but at large wavelength the Zr-Fe crystalline intermetallic compounds appear. These results are discussed in terms of existing models of irradiation kinetics and phase selection during solid state reaction
Confinement, Chiral Symmetry Breaking, and Axial Anomaly from Domain Formation at Intermediate Resolution
Based on general renormalization group arguments, Polyakov's loop-space
formalism, and recent analytical lattice arguments, suggesting, after Abelian
gauge fixing, a description of pure gluodynamics by means of a Georgi-Glashow
like model, the corresponding vacuum fields are defined in a non-local way.
Using lattice information on the gauge invariant field strength correlator in
full QCD, the resolution scale \La_b, at which these fields become relevant
in the vacuum, is determined. For SU(3) gauge theory it is found that
\La_b\sim 2.4 GeV, 3.1 GeV, and 4.2 GeV for ( MeV), ( MeV), and pure gluodynamics, repectively. Implications for the operator
product expansion of physical correlators are discussed. It is argued that the
emergence of magnetic (anti)monopoles in the vacuum at resolution \La_b is a
direct consequence of the randomness in the formation of a low entropy Higgs
condensate. This implies a breaking of chiral symmetry and a proliferation of
the axial U(1) anomaly at this scale already. Justifying Abelian projection, a
decoupling of non-Abelian gauge field fluctuations from the dynamics occurs.
The condensation of (anti)monopoles at \La_c<\La_b follows from the demand
that vacuum fields ought to have vanishing action at any resolution. As
monopoles condense they are reduced to their cores, and hence they become
massless. Apparently broken gauge symmetries at resolutions \La_c<\La\le\La_b
are restored in this process.Comment: 11 pages, 3 figure
The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects
We study the dynamics of four dimensional gauge theories with adjoint
fermions for all gauge groups, both in perturbation theory and
non-perturbatively, by using circle compactification with periodic boundary
conditions for the fermions. There are new gauge phenomena. We show that, to
all orders in perturbation theory, many gauge groups are Higgsed by the gauge
holonomy around the circle to a product of both abelian and nonabelian gauge
group factors. Non-perturbatively there are monopole-instantons with fermion
zero modes and two types of monopole-anti-monopole molecules, called bions. One
type are "magnetic bions" which carry net magnetic charge and induce a mass gap
for gauge fluctuations. Another type are "neutral bions" which are magnetically
neutral, and their understanding requires a generalization of multi-instanton
techniques in quantum mechanics - which we refer to as the
Bogomolny-Zinn-Justin (BZJ) prescription - to compactified field theory. The
BZJ prescription applied to bion-anti-bion topological molecules predicts a
singularity on the positive real axis of the Borel plane (i.e., a divergence
from summing large orders in peturbation theory) which is of order N times
closer to the origin than the leading 4-d BPST instanton-anti-instanton
singularity, where N is the rank of the gauge group. The position of the
bion--anti-bion singularity is thus qualitatively similar to that of the 4-d IR
renormalon singularity, and we conjecture that they are continuously related as
the compactification radius is changed. By making use of transseries and
Ecalle's resurgence theory we argue that a non-perturbative continuum
definition of a class of field theories which admit semi-classical expansions
may be possible.Comment: 112 pages, 7 figures; v2: typos corrected, discussion of
supersymmetric models added at the end of section 8.1, reference adde
- …