56 research outputs found

    Wake deviation of yawed wind turbine by Large-Eddy Simulation

    Get PDF
    International audienceKeywords: Large Eddy Simulation, yaw and wake interaction According to the current energetic and environmental challenges, maximizing the electric power generated in windfarms is a societal concern. New strategies such as involving wind turbine yaw angle seem relevant to reduce wake interaction and associated power losses [1]. Therefore, yawed turbine aerodynamics is modified and remains a challenging investigation topic. Since experimental data on actual windfarm scales are not affordable and given the constant growth of computational resources, high order numerical simulations tend to be a promising approach [2]. The goal of this study is to evaluate a highly resolved numerical model under yaw condition in a wind tunnel before applying it to actual windfarm. The blade modeling is performed using an Actuator Line Method [3] (ALM), coupled to the low Mach-number massively-parallel finite-volume Large-Eddy Simulation (LES) flow solver on unstructured meshes, called YALES2 [4] [5]. The Blind Test 5 experimental configuration led at NTNU [6], gathering numerous experimental data, is reproduced in this study. After the study of a yawed turbine wake interaction with downstream turbine the study of a single yawed turbine (+30 o and 0 o) will be presented. The computational domain of these cases will be the NTNU wind tunnel, involving a turbulence grid aiming to create a fully turbulent sheared inflow [6]. The grid will be modeled using multiple Actuator Lines (to mimic the turbine blades) with dedicated polars [7] [8]. Each computational case is performed on a unstructured mesh with around 150.10 6 tetrahedra. An instantaneous velocity field of the yawed turbine wake interaction is presented on Figure 1. Figure 1: Instantaneous streamwise velocity field of wake interaction between two turbines in the NTNU wind tunnel with unstructured mes

    On the conceptualization and measurement of flow

    Get PDF
    This chapter introduces in chronological order the three main measurement methods – the Flow Questionnaire, the Experience Sampling Method, and the standardized scales of the componential approach – that researchers developed and used in conducting research on the flow state. Each measurement method and underlying conceptualization is explained, and its strengths and limitations are then discussed in relation to the other measurement methods and associated conceptualizations. The analysis reveals that, although the concept of flow remained stable since its inception, the models of flow that researchers developed in conjunction with the measurement methods changed substantially over time. Moreover, the findings obtained by applying the various measurement methods led to corroborations and disconfirmations of the underlying models, and hence provided indications on how to interpret and possibly modify flow theory. The chapter then analyzes the emerging process approach, which conceptualizes and measures flow as a dynamic path rather than an object, and highlights its potential for integrating flow and creativity within the same conceptual framework. The final section outlines new directions for developing more valid and useful measurement methods that can help to advance the understanding of flow, its antecedents, and its consequences

    Crosswind Thresholds Supporting Wake-Vortex-Free Corridors for Departing Aircraft

    Get PDF
    During two field measurement campaigns aircraft wake vortex trajectory and wind measurement data have been collected at Frankfurt airport. Three different approaches to analyse the data have been used in order to estimate crosswind threshold values supporting vortex-free corridors for departing aircraft. Although several competing effects as wake vortex transport in and out of ground effect, temporal and spatial wind variability, and the spreading of aircraft trajectories after take-off complicate the analyses, all three approaches lead to similar crosswind thresholds. Employing standard instrumentation at 10 m height a minimum crosswind threshold of 3.5 – 4.6 ms-1 has been identified to clear a safety corridor of 150 m width from wake vortices with a 95% probability within 60 seconds. Alternative estimations of crosswind thresholds employing different instrumentation and different height ranges are reported. Crosswind thresholds can be reduced if the wind is measured close to the air mass in which the vortices evolve. A definite crosswind threshold for operational use cannot be deduced solely from this study since critical factors like risk and safety assessment have not yet been taken into account

    Optimal design and operating strategy of a carbon-clean micro gas turbine for combined heat and power applications

    No full text
    As a distributed energy production technology, micro gas turbines (mGTs) offer a great potential for small-scale combined heat and power (CHP) production, adding flexibility to the electricity system. Nevertheless, due to the evident climate change, a very low greenhouse gas (GHG) emission is a fundamental requirement for our future energy systems. For this purpose, combining an mGT with a carbon capture (CC) plant might offer an effective carbon clean energy production. In the literature, several studies are available, addressing individual aspects of this attractive energy solution; however, an in-depth analysis focusing on the energy integration and strategy optimisation of an mGT working in CHP mode with CC has never been performed. This work is the continuation of the previous thermodynamic analysis in which an mGT and a micro Humid Air Turbine (mHAT) have been directly connected with a CC unit without heat recovery. In the current study, the aim is to find the best plant layout and the best operating strategy based on the electrical, thermal and global cycle performance. Results show that the full CHP operation of the mGT offers the highest global efficiency between all plant layouts. Contrary to what may be expected from previous analyses on cycle humidification, the mHAT does not entail a better performance when the turbine cycle and the CC unit are energetically integrated. Direct heat recovery, which reduces the CC thermal demand, is a preferable measure which involves a lower energy degradation. Sankey and Grassmann diagrams are presented to support the numerical results. © 2019 Elsevier Lt

    Wake deviation of yawed wind turbine by Large-Eddy Simulation

    No full text
    International audienceKeywords: Large Eddy Simulation, yaw and wake interaction According to the current energetic and environmental challenges, maximizing the electric power generated in windfarms is a societal concern. New strategies such as involving wind turbine yaw angle seem relevant to reduce wake interaction and associated power losses [1]. Therefore, yawed turbine aerodynamics is modified and remains a challenging investigation topic. Since experimental data on actual windfarm scales are not affordable and given the constant growth of computational resources, high order numerical simulations tend to be a promising approach [2]. The goal of this study is to evaluate a highly resolved numerical model under yaw condition in a wind tunnel before applying it to actual windfarm. The blade modeling is performed using an Actuator Line Method [3] (ALM), coupled to the low Mach-number massively-parallel finite-volume Large-Eddy Simulation (LES) flow solver on unstructured meshes, called YALES2 [4] [5]. The Blind Test 5 experimental configuration led at NTNU [6], gathering numerous experimental data, is reproduced in this study. After the study of a yawed turbine wake interaction with downstream turbine the study of a single yawed turbine (+30 o and 0 o) will be presented. The computational domain of these cases will be the NTNU wind tunnel, involving a turbulence grid aiming to create a fully turbulent sheared inflow [6]. The grid will be modeled using multiple Actuator Lines (to mimic the turbine blades) with dedicated polars [7] [8]. Each computational case is performed on a unstructured mesh with around 150.10 6 tetrahedra. An instantaneous velocity field of the yawed turbine wake interaction is presented on Figure 1. Figure 1: Instantaneous streamwise velocity field of wake interaction between two turbines in the NTNU wind tunnel with unstructured mes

    Aircraft Vortices in Stably Stratified and Weakly Turbulent Atmospheres: Simulation and Modeling

    No full text
    corecore