680 research outputs found

    Engineered Optical Nonlocality in Nanostructured Metamaterials

    Get PDF
    We analyze dispersion properties of metal-dielectric nanostructured metamaterials. We demonstrate that, in a sharp contrast to the results for the corresponding effective medium, the structure demonstrates strong optical nonlocality due to excitation of surface plasmon polaritons that can be engineered by changing a ratio between the thicknesses of metal and dielectric layers. In particular, this nonlocality allows the existence of an additional extraordinary wave that manifests itself in the splitting of the TM-polarized beam scattered at an air-metamaterial interface

    Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers

    Full text link
    Biosensors based on the principle of surface plasmon resonance (SPR) detection were used to measure biomolecular interactions in sarcomeres and changes of the dielectric constant of tubulin samples with varying concentration. At SPR, photons of laser light efficiently excite surface plasmons propagating along a metal (gold) film. This resonance manifests itself as a sharp minimum in the reflection of the incident laser light and occurs at a characteristic angle. The dependence of the SPR angle on the dielectric permittivity of the sample medium adjacent to the gold film allows the monitoring of molecular interactions at the surface. We present results of measurements of cross-bridge attachment/detachment within intact mouse heart muscle sarcomeres and measurements on bovine tubulin molecules pertinent to cytoskeletal signal transduction models.Comment: Submitted to Journal of Modern Optics *Corresponding author: Andreas Mershin ([email protected]

    Anomalous transparency of water-air interface for low-frequency sound

    Get PDF
    Sound transmission through water-air interface is normally weak because of a strong mass density contrast. Here we show that the transparency of the interface increases dramatically at low frequencies. Rather counterintuitively, almost all acoustic energy emitted by a sufficiently shallow monopole source under water is predicted to be radiated into atmosphere. Physically, increased transparency at lower frequencies is due to the increasing role of inhomogeneous waves and a destructive interference of direct and surface-reflected waves under water. The phenomenon of anomalous transparency has significant implications for acoustic communication across the water-air interface, generation of ambient noise, and detection of underwater explosions.Comment: 29 pages, including 4 figure

    Ray-based description of normal mode amplitudes in a range-dependent waveguide

    Full text link
    An analogue of the geometrical optics for description of the modal structure of a wave field in a range-dependent waveguide is considered. In the scope of this approach the mode amplitude is expressed through solutions of the ray equations. This analytical description accounts for mode coupling and remains valid in a nonadiabatic environment. It has been used to investigate the applicability condition of the adiabatic approximation. An applicability criterion is formulated as a restriction on variations of the action variable of the ray.Comment: 11 pages, 5 figure

    Disorder-induced cavities, resonances, and lasing in randomly-layered media

    Full text link
    We study, theoretically and experimentally, disorder-induced resonances in randomly-layered samples,and develop an algorithm for the detection and characterization of the effective cavities that give rise to these resonances. This algorithm enables us to find the eigen-frequencies and pinpoint the locations of the resonant cavities that appear in individual realizations of random samples, for arbitrary distributions of the widths and refractive indices of the layers. Each cavity is formed in a region whose size is a few localization lengths. Its eigen-frequency is independent of the location inside the sample, and does not change if the total length of the sample is increased by, for example, adding more scatterers on the sides. We show that the total number of cavities, NcavN_{\mathrm{cav}}, and resonances, NresN_{\mathrm{res}}, per unit frequency interval is uniquely determined by the size of the disordered system and is independent of the strength of the disorder. In an active, amplifying medium, part of the cavities may host lasing modes whose number is less than NresN_{\mathrm{res}}. The ensemble of lasing cavities behaves as distributed feedback lasers, provided that the gain of the medium exceeds the lasing threshold, which is specific for each cavity. We present the results of experiments carried out with single-mode optical fibers with gain and randomly-located resonant Bragg reflectors (periodic gratings). When the fiber was illuminated by a pumping laser with an intensity high enough to overcome the lasing threshold, the resonances revealed themselves by peaks in the emission spectrum. Our experimental results are in a good agreement with the theory presented here.Comment: minor correction

    Acoustic scattering from double-diffusive microstructure

    Get PDF
    Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 1449-1462, doi:10.1121/1.2764475.Laboratory measurements of high-frequency broadband acoustic backscattering (200–600 kHz) from the diffusive regime of double-diffusive microstructure have been performed. This type of microstructure, which was characterized using direct microstructure and optical shadowgraph techniques, is identified by sharp density and sound speed interfaces separating well-mixed layers. Vertical acoustic backscattering measurements were performed for a range of physical parameters controlling the double-diffusive microstructure. The echoes have been analyzed in both the frequency domain, providing information on the spectral response of the scattering, and in the time domain, using pulse compression techniques. High levels of variability were observed, associated with interface oscillations and turbulent plumes, with many echoes showing significant spectral structure. Acoustic estimates of interface thickness (1–3 cm), obtained for the echoes with exactly two peaks in the compressed pulse output, were in good agreement with estimates based on direct microstructure and optical shadowgraph measurements. Predictions based on a one-dimensional weak-scattering model that includes the actual density and sound speed profiles agree reasonably with the measured scattering. A remote-sensing tool for mapping oceanic microstructure, such as high-frequency broadband acoustic scattering, could lead to a better understanding of the extent and evolution of double-diffusive layering, and to the importance of double diffusion to oceanic mixing.Funding for this project was provided by the Ocean Acoustics program at the Office of Naval Research and by the Woods Hole Oceanographic Institution Cecil and Ida Greene Technology Award. Tetjana Ross was supported by the WHOI Postdoctoral Scholarship through the generous support of the Doherty Foundation

    Influence of positional correlations on the propagation of waves in a complex medium with polydisperse resonant scatterers

    Get PDF
    We present experimental results on a model system for studying wave propagation in a complex medium exhibiting low frequency resonances. These experiments enable us to investigate a fundamental question that is relevant for many materials, such as metamaterials, where low-frequency scattering resonances strongly influence the effective medium properties. This question concerns the effect of correlations in the positions of the scatterers on the coupling between their resonances, and hence on wave transport through the medium. To examine this question experimentally, we measure the effective medium wave number of acoustic waves in a sample made of bubbles embedded in an elastic matrix over a frequency range that includes the resonance frequency of the bubbles. The effective medium is highly dispersive, showing peaks in the attenuation and the phase velocity as functions of the frequency, which cannot be accurately described using the Independent Scattering Approximation (ISA). This discrepancy may be explained by the effects of the positional correlations of the scatterers, which we show to be dependent on the size of the scatterers. We propose a self-consistent approach for taking this "polydisperse correlation" into account and show that our model better describes the experimental results than the ISA

    Head Wave Correlations in Ambient Noise

    Get PDF
    Ambient ocean noise is processed with a vertical line array to reveal coherent time-separated arrivals suggesting the presence of head wave multipath propagation. Head waves, which are critically propagating water waves created by seabed waves traveling parallel to the water-sediment interface, can propagate faster than water-only waves. Such eigenrays are much weaker than water-only eigenrays, and are often completely overshadowed by them. Surface-generated noise is different whereby it amplifies the coherence between head waves and critically propagating water-only waves, which is measured by cross-correlating critically steered beams. This phenomenon is demonstrated both experimentally and with a full wave simulation

    Observation of Surface-Avoiding Waves: A New Class of Extended States in Periodic Media

    Full text link
    Coherent time-domain optical experiments on GaAs-AlAs superlattices reveal the exis-tence of an unusually long-lived acoustic mode at ~ 0.6 THz, which couples weakly to the environment by evading the sample boundaries. Classical as well as quantum states that steer clear of surfaces are generally shown to occur in the spectrum of periodic struc-tures, for most boundary conditions. These surface-avoiding waves are associated with frequencies outside forbidden gaps and wavevectors in the vicinity of the center and edge of the Brillouin zone. Possible consequences for surface science and resonant cavity ap-plications are discussed.Comment: 16 pages, 3 figure

    Combining airborne gas and aerosol measurements with HYSPLIT: a visualization tool for simultaneous evaluation of air mass history and back trajectory consistency

    Get PDF
    The history of air masses is often investigated using backward trajectories to gain knowledge about processes along the air parcel path as well as possible source regions. Here, we describe a refined approach that incorporates airborne gas, aerosol, and environmental data into back trajectories and show how this technique allows for simultaneous evaluation of air mass history and back trajectory reliability without the need to calculate trajectory errors. <br><br> We use the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and add a simple semi-automated computing routine to facilitate high-frequency coverage of back trajectories initiated along free tropospheric (FT) flight tracks and profiles every 10 s. We integrate our in situ physiochemical data by color-coding each of these trajectories with its corresponding in situ tracer values measured at the back trajectory start points along the flight path. The unique color for each trajectory aids assessment of trajectory reliability through the visual clustering of air mass pathways of similar coloration. Moreover, marked changes in trajectories associated with marked changes evident in measured physiochemical or thermodynamic properties of an air mass add credence to trajectories. This is particularly true when these air mass properties are linked to trajectory features characteristic of recognized sources or processes. This visual clustering of air mass pathways is of particular value for large-scale 3-D flight tracks common to aircraft experiments where air mass features of interest are often spatially distributed and temporally separated. <br><br> The cluster-visualization tool used here reveals that most FT back trajectories with pollution signatures measured in the central equatorial Pacific reach back to sources on the South American continent over 10 000 km away and 12 days back in time, e.g., the Amazonian basin. We also demonstrate the distinctions in air mass properties between these and trajectories that penetrate deep convection in the Inter-Tropical Convergence Zone. Additionally, for the first time we show consistency of modeled precipitation along back trajectories with scavenging signatures in the aerosol measured for these trajectories
    • …
    corecore