140 research outputs found
Energy expenditure in female workers in a textile factory
Autori su ispitivali energetske rashode radnica na tri radna mjesta, i to: šivanje električnim strojem, krojenje električnom pilom i rad na tkalačkom stroju za izradu vrpce. Ispitivanja su vršena standardnim metodama, određivanjem energetskih ekvivalenata za pojedine specifične radnje, izradom vremenskih tablica i preračunavanjem utrošenih kalorija po pojedinim radnim satima. Utrošeno radno vrijeme podijeljeno je na djelatnosti A, B i C. A = rad, osnovni za radno mjesto, B = priprema za izvršavanje osnovnog rada i C = odmor spontani i službeni. Energetska rashodi radnica u tekstilnoj industriji pokazuju velike razlike (do 500 kal.) po pojedinim radnim mjestima. Taj podatak omogućava da se i u ovakvim pogonima lake industrije izvrši diferencijacija radnih mjesta po njihovoj energetskoj opterećenosti. Osim toga ističu potrebu da se ispita mogućnost poboljšanja samog rada, kako bi se uz manji energetski utrošak mogao postići isti radni efekt.The authors have studied the problem of energy expenditure in female workers in a textile factory, by using standard methods. Data evaluated so far show that there is a great difference in energy expenditure for different works in this factory. lt is possible to differentiate the heaviness of work done in this industry, and it is necessary to investigate what should be done to reduce the energy expenditure to a lower level
Energy expenditure in textile workers
Određivani su energetski ekvivalenti za pojedine aktivnosti u tekstilnoj industriji. Ispitivanje je izvršeno kod 17 radnika i radnika poduzeća »Nada Dimić« u Zagrebu. Ukupno je ispitano 80 uzoraka izdahnutog zraka za devet aktivnosti specifičnih za takvo poduzeće. Analiza izdahnutog zraka vršena je metodom po Scholanderu. Dobiveni energetski ekvivalenti pokazuju da je raspon kalorija koje se troše za pojedine radnje dosta velik, pa da u prosjeku varira od 1,56 do 5,63 kal/min, ali se većina radova nalazi na donjoj granici rashoda.The examination of energy expenditure requirement was carried out in a textile factory in Zagreb. 17 workers, women and men, were examined by a Franz-Müller respirometer. Expired air samples were taken and analysed after Scholander. The results shown in calories per minute include values for basal metabolism. The energy expenditure was high only in few cases; in all others the values were very low, corresponding to the values obtained by other authors
The Cytoplasmic Domain of MUC1 Induces Hyperplasia in the Mammary Gland and Correlates with Nuclear Accumulation of β-Catenin
MUC1 is an oncoprotein that is overexpressed in up to 90% of breast carcinomas. A previous in vitro study by our group demonstrated that the cytoplasmic domain of MUC1 (MUC1-CD), the minimal functional unit of MUC1, contributes to the malignant phenotype in cells by binding directly to β-catenin and protecting β-catenin from GSK3β-induced degradation. To understand the in vivo role of MUC1-CD in breast development, we generated a MUC1-CD transgenic mouse model under the control of the MMTV promoter in a C57BL/6J background, which is more resistant to breast tumor. We show that the expression of MUC1-CD in luminal epithelial cells of the mammary gland induced a hyperplasia phenotype characterized by the development of hyper-branching and extensive lobuloalveoli in transgenic mice. In addition to this hyperplasia, there was a marked increase in cellular proliferation in the mouse mammary gland. We further show that MUC1-CD induces nuclear localization of β-catenin, which is associated with a significant increase of β-catenin activity, as shown by the elevated expression of cyclin D1 and c-Myc in MMTV-MUC1-CD mice. Consistent with this finding, we observed that overexpression of MUC1-C is associated with β-catenin nuclear localization in tumor tissues and increased expression of Cyclin D1 and c-Myc in breast carcinoma specimens. Collectively, our data indicate a critical role for MUC1-CD in the development of mammary gland preneoplasia and tumorigenesis, suggesting MUC1-CD as a potential target for the diagnosis and chemoprevention of human breast cancer
Extramedullary myeloma in an HIV-seropositive subject. Literature review and report of an unusual case
Myeloma is characterized by monoclonal bone marrow plasmacytosis, the presence of M-protein in serum and/or in urine and osteolytic bone lesions. HIV-seropositive subjects with myeloma are younger at the time of diagnosis of the tumour and usually the myeloma has a more aggressive clinical course than it does in HIV-seronegative subjects
Use of a T cell interferon gamma release assay in the investigation for suspected active tuberculosis in a low prevalence area
<p>Abstract</p> <p>Background</p> <p>In settings with low background prevalence of tuberculosis (TB) infection, interferon-γ release assays (IGRA) could be useful for diagnosing active TB. This study aims to evaluate the performance of QuantiFERON<sup>®</sup>-TB Gold (QFT-G) in the investigation for suspected active TB, with particular attention to patients originating in high-incidence countries. Furthermore, factors associated with QFT-G results in patients with active TB were assessed.</p> <p>Methods</p> <p>From patients investigated for clinically suspected active TB, blood was obtained for QFT-G testing, in addition to routine investigations. Positive (PPV) and negative (NPV) predictive values for QFT-G were calculated, comparing patients with confirmed TB and those with other final diagnoses. QFT-G results in TB patients originating from countries with intermediate or high TB incidence were compared with QFT-G results from a control group of recently arrived asymptomatic immigrants from high-incidence countries. Factors associated with QFT-G outcome in patients with confirmed TB were assessed.</p> <p>Results</p> <p>Among 141 patients, 41/70 (58.6%) with confirmed TB had a positive QFT-G test, compared to 16/71 (22.6%) patients with other final diagnoses, resulting in overall PPV of 71.9% and NPV of 67.6%. For patients with pulmonary disease, PPV and NPV were 61.1% and 67.7%, respectively, and 90.5% and 66.7% for subjects with extrapulmonary manifestations. Comparing patients from high-incidence countries with controls yielded a PPV for active TB of 76.7%, and a NPV of 82.7%. Patients with confirmed TB and positive QFT-G results were characterized by a lower median peripheral white blood cell count (5.9 × 10<sup>9</sup>/L vs. 8.8 × 10<sup>9</sup>/L; <it>P </it>< 0.001) and a higher median body mass index (22.7 vs. 20.7; <it>P </it>= 0.043) as compared to QFT-G-negative TB patients.</p> <p>Conclusion</p> <p>The overall PPV and NPV of QFT-G for identifying active TB were unsatisfactory, especially for pulmonary disease. Thus, the usefulness of QFT-G for this purpose is questionable. However, a high PPV was observed for extrapulmonary TB and QFT-G might be considered in the diagnostic process in this situation. The PPV and NPV for identifying active TB among persons originating from regions with high-and intermediate TB incidence was similar to that observed in subjects originating in the low-incidence region.</p
Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice
The ability to genetically manipulate mice has led to rapid progress in our understanding of the roles of different gene products in human disease. Transgenic mice have often been created in the FVB/NJ (FVB) strain due to its high fecundity, while gene-targeted mice have been developed in the 129/SvJ-C57Bl/6J strains due to the capacity of 129/SvJ embryonic stem cells to facilitate germline transmission. Gene-targeted mice are commonly backcrossed into the C57Bl/6J (B6) background for comparison with existing data. Genetic modifiers have been shown to modulate mammary tumor latency in mouse models of breast cancer and it is commonly known that the FVB strain is susceptible to mammary tumors while the B6 strain is more resistant. Since gene-targeted mice in the B6 background are frequently bred into the polyomavirus middle T (PyMT) mouse model of breast cancer in the FVB strain, we have sought to understand the impact of the different genetic backgrounds on the resulting phenotype. We bred mice deficient in the inducible nitric oxide synthase (iNOS) until they were congenic in the PyMT model in the FVB and B6 strains. Our results reveal that the large difference in mean tumor latencies in the two backgrounds of 53 and 92 days respectively affect the ability to discern smaller differences in latency due to the Nos2 genetic mutation. Furthermore, the longer latency in the B6 strain enables a more detailed analysis of tumor formation indicating that individual tumor development is not stoichastic, but is initiated in the #1 glands and proceeds in early and late phases. NO production affects tumors that develop early suggesting an association of iNOS-induced NO with a more aggressive tumor phenotype, consistent with human clinical data positively correlating iNOS expression with breast cancer progression. An examination of lung metastases, which are significantly reduced in PyMT/iNOS(−/−) mice compared with PyMT/iNOS(+/+) mice only in the B6 background, is concordant with these findings. Our data suggest that PyMT in the B6 background provides a useful model for the study of inflammation-induced breast cancer
Controls of picophytoplankton abundance and composition in a highly dynamic marine system, the Northern Alboran Sea (Western Mediterranean)
The Alboran Sea is a highly dynamic basin which exhibits a high spatio-temporal variability of hydrographic structures (e.g. fronts, gyres, coastal upwellings). This work compares the abundance and composition of picophytoplankton observed across the northern Alboran Sea among eleven cruises between 2008 and 2012 using flow cytometry. We evaluate the seasonal and longitudinal variability of picophytoplankton on the basis of the circulation regimes at a regional scale and explore the presence of cyanobacteria ecotypes in the basin. The maximal abundances obtained for Prochlorococcus, Synechococcus and picoeukaryotes (12.7 × 104, 13.9 × 104 and 8.6 × 104 cells mL− 1 respectively) were consistent with those reported for other adjacent marine areas. Seasonal changes in the abundance of the three picophytoplankton groups were highly significant although they did not match the patterns described for other coastal waters. Higher abundances of Prochlorococcus were obtained in autumn-winter while Synechococcus and picoeukaryotes exhibited a different seasonal abundance pattern depending on the sector (e.g. Synechococcus showed higher abundance in summer in the west sector and during winter in the eastern study area). Additionally, conspicuous longitudinal gradients were observed for Prochlorococcus and Synechococcus, with Prochlorococcus decreasing from west to east and Synechococcus following the opposite pattern. The analysis of environmental variables (i.e. temperature, salinity and inorganic nutrients) and cell abundances indicates that Prochlorococcus preferred high salinity and nitrate to phosphate ratio. On the contrary, temperature did not seem to play a role in Prochlorococcus distribution as it was numerically important during the whole seasonal cycle. Variability in Synechococcus abundance could not be explained by changes in any environmental variable suggesting that different ecotypes were sampled during the surveys. In particular, our data would indicate the presence of at least two ecotypes of Synechococcus: a summer ecotype widely distributed in the whole Alboran Sea and a winter ecotype adapted to lower temperature and higher nutrient concentration whose growth is favoured in the eastern sector.Versión del editor2,444
Monomeric C-reactive protein-a key molecule driving development of Alzheimer's disease associated with brain ischaemia?
Alzheimer’s disease (AD) increases dramatically in patients with ischaemic stroke. Monomeric
C-reactive protein (mCRP) appears in the ECM of ischaemic tissue after stroke, associating with
microvasculature, neurons and AD-plaques, Aβ, also, being able to dissociate native-CRP into
inflammatory, mCRP in vivo. Here, mCRP injected into the hippocampal region of mice was
retained within the retrosplenial tract of the dorsal 3rd ventrical and surrounding major vessels.
Mice developed behavioural/cognitive deficits within 1 month, concomitant with mCRP staining
within abnormal looking neurons expressing p-tau and in beta-amyloid 1-42-plaque positive regions.
mCRP co-localised with CD105 in microvessels suggesting angiogenesis. Phospho-arrays/Western
blotting identified signalling activation in endothelial cells and neurons through p-IRS-1, p-Tau and
p-ERK1/2-which was blocked following pre-incubation with mCRP-antibody. mCRP increased vascular
monolayer permeability and gap junctions, increased NCAM expression and produced haemorrhagic
angiogenesis in mouse matrigel implants. mCRP induced tau244–372 aggregation and assembly in
vitro. IHC study of human AD/stroke patients revealed co-localization of mCRP with Aβ plaques,
tau-like fibrils and IRS-1/P-Tau positive neurons and high mCRP-levels spreading from infarcted core
regions matched reduced expression of Aβ/Tau. mCRP may be responsible for promoting dementia
after ischaemia and mCRP clearance could inform therapeutic avenues to reduce the risk of future dementia
Ectodermal Influx and Cell Hypertrophy Provide Early Growth for All Murine Mammary Rudiments, and Are Differentially Regulated among Them by Gli3
Mammary gland development starts in utero with one or several pairs of mammary rudiments (MRs) budding from the surface ectodermal component of the mammalian embryonic skin. Mice develop five pairs, numbered MR1 to MR5 from pectoral to inguinal position. We have previously shown that Gli3Xt-J/Xt-J mutant embryos, which lack the transcription factor Gli3, do not form MR3 and MR5. We show here that two days after the MRs emerge, Gli3Xt-J/Xt-J MR1 is 20% smaller, and Gli3Xt-J/Xt-J MR2 and MR4 are 50% smaller than their wild type (wt) counterparts. Moreover, while wt MRs sink into the underlying dermis, Gli3Xt-J/Xt-J MR4 and MR2 protrude outwardly, to different extents. To understand why each of these five pairs of functionally identical organs has its own, distinct response to the absence of Gli3, we determined which cellular mechanisms regulate growth of the individual MRs, and whether and how Gli3 regulates these mechanisms. We found a 5.5 to 10.7-fold lower cell proliferation rate in wt MRs compared to their adjacent surface ectoderm, indicating that MRs do not emerge or grow via locally enhanced cell proliferation. Cell-tracing experiments showed that surface ectodermal cells are recruited toward the positions where MRs emerge, and contribute to MR growth during at least two days. During the second day of MR development, peripheral cells within the MRs undergo hypertrophy, which also contributes to MR growth. Limited apoptotic cell death counterbalances MR growth. The relative contribution of each of these processes varies among the five MRs. Furthermore, each of these processes is impaired in the absence of Gli3, but to different extents in each MR. This differential involvement of Gli3 explains the variation in phenotype among Gli3Xt-J/Xt-J MRs, and may help to understand the variation in numbers and positions of mammary glands among mammals
Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland.
Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer.Wellcome Trus
- …