8,645 research outputs found
Irreversible Quantum Mechanics in the Neutral K-System
The neutral Kaon system is used to test the quantum theory of resonance
scattering and decay phenomena. The two dimensional Lee-Oehme-Yang theory with
complex Hamiltonian is obtained by truncating the complex basis vector
expansion of the exact theory in Rigged Hilbert space. This can be done for K_1
and K_2 as well as for K_S and K_L, depending upon whether one chooses the
(self-adjoint, semi-bounded) Hamiltonian as commuting or non-commuting with CP.
As an unexpected curiosity one can show that the exact theory (without
truncation) predicts long-time 2 pion decays of the neutral Kaon system even if
the Hamiltonian conserves CP.Comment: 36 pages, 1 PostScript figure include
Quantum mechanics with time-dependent parameters
Smooth composite bundles provide the adequate geometric description of
classical mechanics with time-dependent parameters. We show that the Berry's
phase phenomenon is described in terms of connections on composite Hilbert
space bundles.Comment: 7 pages, LaTe
EPR-Bell Nonlocality, Lorentz Invariance, and Bohmian Quantum Theory
We discuss the problem of finding a Lorentz invariant extension of Bohmian
mechanics. Due to the nonlocality of the theory there is (for systems of more
than one particle) no obvious way to achieve such an extension. We present a
model invariant under a certain limit of Lorentz transformations, a limit
retaining the characteristic feature of relativity, the non-existence of
absolute time resp. simultaneity. The analysis of this model exemplifies an
important property of any Bohmian quantum theory: the quantum equilibrium
distribution cannot simultaneously be realized in all
Lorentz frames of reference.Comment: 24 pages, LaTex, 4 figure
On Epstein's trajectory model of non-relativistic quantum mechanics
In 1952 Bohm presented a theory about non-relativistic point-particles moving
along deterministic trajectories and showed how it reproduces the predictions
of standard quantum theory. This theory was actually presented before by de
Broglie in 1926, but Bohm's particular formulation of the theory inspired
Epstein to come up with a different trajectory model. The aim of this paper is
to examine the empirical predictions of this model. It is found that the
trajectories in this model are in general very different from those in the de
Broglie-Bohm theory. In certain cases they even seem bizarre and rather
unphysical. Nevertheless, it is argued that the model seems to reproduce the
predictions of standard quantum theory (just as the de Broglie-Bohm theory).Comment: 12 pages, no figures, LaTex; v2 minor improvement
The quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation
The usual quantitative condition has been widely used in the practical
applications of the adiabatic theorem. However, it had never been proved to be
sufficient or necessary before. It was only recently found that the
quantitative condition is insufficient, but whether it is necessary remains
unresolved. In this letter, we prove that the quantitative condition is
necessary in guaranteeing the validity of the adiabatic approximation.Comment: 4 pages,1 figue
Evolution of field spiral galaxies up to redshifts z=1
We have gained VLT/FORS spectra and HST/ACS images of a sample of 220 distant
field spiral galaxies. Spatially resolved rotation curves were extracted and
fitted with synthetic velocity fields that take into account all geometric and
observational effects, like blurring due to the slit width and seeing
influence. The maximum rotation velocity Vmax could be determined for 124
galaxies that cover the redshift range 0.1<z<1.0. The luminosity-rotation
velocity distribution of this sample is offset from the Tully-Fisher relation
(TFR) of local low-mass spirals, whereas the distant high-mass spirals are
compatible with the local TFR. We show that the slope of the local and the
intermediate-z TFR would be in compliance if its scatter decreased by more than
a factor of 3 between z~0.5 and z~0. On the other hand, the distant
low-luminosity disks have much lower stellar M/L ratios than their local
counterparts, while high-luminosity disks barely evolved in M/L over the
covered redshift range. This could be the manifestation of the "downsizing"
effect, i.e. the succesive shift of the peak of star formation from high-mass
to low-mass galaxies towards lower redshifts. This trend might be canceled out
in the TF diagram due to the simultaneous evolution of multiple parameters. We
also estimate the ratios between stellar and total masses, finding that these
remained constant since z=1, as would be expected in the context of
hierarchically growing structure. (Abridged)Comment: 20 pages, 5 figures, ApJ, accepte
Electronic spin precession and interferometry from spin-orbital entanglement in a double quantum dot
A double quantum dot inserted in parallel between two metallic leads allows
to entangle the electron spin with the orbital (dot index) degree of freedom.
An Aharonov-Bohm orbital phase can then be transferred to the spinor
wavefunction, providing a geometrical control of the spin precession around a
fixed magnetic field. A fully coherent behaviour is obtained in a mixed
orbital/spin Kondo regime. Evidence for the spin precession can be obtained,
either using spin-polarized metallic leads or by placing the double dot in one
branch of a metallic loop.Comment: Final versio
Classical solution of the wave equation
The classical limit of wave quantum mechanics is analyzed. It is shown that
the general requirements of continuity and finiteness to the solution
, where and
is the reduced classical action of the physical system, result in the
asymptote of the exact solution and general quantization condition for ,
which yields the exact eigenvalues of the system.Comment: 8 Pages, 10 Refs, LaTe
- âŠ