29 research outputs found
A Penicillium chrysogenum-based expression system for the production of small, cysteine-rich antifungal proteins for structural and functional analyses
Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus niger
Biochemistry of microbial itaconic acid production
Itaconic acid is an unsaturated dicarbonic acid which has a high potential as a biochemical building block, because it can be used as a monomer for the production of a plethora of products including resins, plastics, paints, and synthetic fibers. Some Aspergillus species, like A. itaconicus and A. terreus, show the ability to synthesize this organic acid and A. terreus can secrete significant amounts to the media (>80 g/L). However, compared with the citric acid production process (titers >200 g/L) the achieved titers are still low and the overall process is expensive because purified substrates are required for optimal productivity. Itaconate is formed by the enzymatic activity of a cis-aconitate decarboxylase (CadA) encoded by the cadA gene in A. terreus. Cloning of the cadA gene into the citric acid producing fungus A. niger showed that it is possible to produce itaconic acid also in a different host organism. This review will describe the current status and recent advances in the understanding of the molecular processes leading to the biotechnological production of itaconic acid
An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger
Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain
Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger
Antioxidant effects of β-carotene, but not of retinol and vitamin E, in orbital fibroblasts from patients with Graves’ orbitopathy (GO)
Background: Oxidative stress is involved in the pathogenesis of Graves' orbitopathy (GO) and several antioxidant agents, namely, selenium, quercetin, enalapril, vitamin C, N-acetyl-l-cysteine, and melatonin, have been shown to reduce oxidative stress and its consequences in primary culture of orbital fibroblasts. In addition, selenium is effective for the treatment of mild GO. Here, we investigated the action of three additional antioxidants in orbital fibroblasts, namely, retinol, Î2-carotene, and vitamin E. Methods: Primary cultures of orbital fibroblasts were established from GO patients and control subjects. To induce oxidative stress, cells were treated with H2O2, after which glutathione disulfide (GSSG) (a parameter of oxidative stress), cell proliferation, hyaluronic acid, TNFα, IFNÎ3, and IL1Î2 were measured. Results: H2O2-dependent oxidative stress (augmented GSSG) was associated with increased cell proliferation and cytokine release. All the three antioxidant substances reduced GSSG in both GO and control fibroblasts.β-carotene reduced proliferation in GO, but not in control fibroblasts. IL1Î2 was reduced by all three substances. Retinol reduced IFNÎ3 in GO and control fibroblasts. Conclusions: Our study supports an antioxidant role of retinol, β-carotene, and vitamin E in orbital fibroblasts from patients with GO and provides a basis for a possible clinical use these substances
Redirection of pyruvate flux toward desired metabolic pathways through substrate channeling between pyruvate kinase and pyruvate-converting enzymes in Saccharomyces cerevisiae
Spatial organization of metabolic enzymes allows substrate channeling, which accelerates processing of intermediates. Here, we investigated the effect of substrate channeling on the flux partitioning at a metabolic branch point, focusing on pyruvate metabolism in Saccharomyces cerevisiae. As a platform strain for the channeling of pyruvate flux, PYK1-Coh-Myc strain was constructed in which PYK1 gene encoding pyruvate kinase is tagged with cohesin domain. By using high-affinity cohesin-dockerin interaction, the pyruvate-forming enzyme Pyk1 was tethered to heterologous pyruvate-converting enzymes, lactate dehydrogenase and α-acetolactate synthase, to produce lactic acid and 2,3-butanediol, respectively. Pyruvate flux was successfully redirected toward desired pathways, with a concomitant decrease in ethanol production even without genetic attenuation of the ethanol-producing pathway. This pyruvate channeling strategy led to an improvement of 2,3-butanediol production by 38%, while showing a limitation in improving lactic acid production due to a reduced activity of lactate dehydrogenase by dockerin tagging
