284 research outputs found
Reaching the quantum limit of sensitivity in electron spin resonance
We report pulsed electron-spin resonance (ESR) measurements on an ensemble of
Bismuth donors in Silicon cooled at 10mK in a dilution refrigerator. Using a
Josephson parametric microwave amplifier combined with high-quality factor
superconducting micro-resonators cooled at millikelvin temperatures, we improve
the state-of-the-art sensitivity of inductive ESR detection by nearly 4 orders
of magnitude. We demonstrate the detection of 1700 bismuth donor spins in
silicon within a single Hahn echo with unit signal-to-noise (SNR) ratio,
reduced to just 150 spins by averaging a single Carr-Purcell-Meiboom-Gill
sequence. This unprecedented sensitivity reaches the limit set by quantum
fluctuations of the electromagnetic field instead of thermal or technical
noise, which constitutes a novel regime for magnetic resonance.Comment: Main text : 10 pages, 4 figures. Supplementary text : 16 pages, 8
figure
Storage and retrieval of microwave fields at the single-photon level in a spin ensemble
We report the storage of microwave pulses at the single-photon level in a
spin-ensemble memory consisting of NV centers in a diamond crystal
coupled to a superconducting LC resonator. The energy of the signal, retrieved
later by spin-echo techniques, reaches of the
energy absorbed by the spins, and this storage efficiency is quantitatively
accounted for by simulations. This figure of merit is sufficient to envision
first implementations of a quantum memory for superconducting qubits.Comment: 6 page
Contributions of the Environmental Non Governmental Organisations and international law on climate change
This study aims at finding out how Non Governmental Organisations (NGOs) perceive this issue and what roles they play in the fight against this phenomenon and in its formation in order to contribute to this domain and analyse contributions of Non Governmental Organisations to the International law on climate change. Results show that consequences of climate changeare visible and real. Thus, NGOs such as Friends of the Earth, Greenpeace, World Wild Funds (WWF), World Watch Institute (WWI) and Sierra Club emerged in the mode of the International law, bringing an effective participation in International negotiations by cooperating with States and by sensitizing citizens and political decision-makers.
For this purpose, the United Nations Framework Convention on Climate Change (UNFCCC) was adopted in 1992 and the Kyoto Protocol in 1997 as well as several other multilateral treaties during different Conventions of Parties (COP). However, this struggle is opposed by industrialists and other States that protect their short-term interests and support the idea that climate change mightnot exist or climatic change is not due to men, but rather to natural phenomena. That is why NGOs have to actively play their role of pressure to call out to decision makers and populations on consequences of the climate change so that we can attenuate this phenomenon because the more we are doing nothing today, the more difficult it will be to avoid the consequences tomorrow
Controlling spin relaxation with a cavity
Spontaneous emission of radiation is one of the fundamental mechanisms by
which an excited quantum system returns to equilibrium. For spins, however,
spontaneous emission is generally negligible compared to other non-radiative
relaxation processes because of the weak coupling between the magnetic dipole
and the electromagnetic field. In 1946, Purcell realized that the spontaneous
emission rate can be strongly enhanced by placing the quantum system in a
resonant cavity -an effect which has since been used extensively to control the
lifetime of atoms and semiconducting heterostructures coupled to microwave or
optical cavities, underpinning single-photon sources. Here we report the first
application of these ideas to spins in solids. By coupling donor spins in
silicon to a superconducting microwave cavity of high quality factor and small
mode volume, we reach for the first time the regime where spontaneous emission
constitutes the dominant spin relaxation mechanism. The relaxation rate is
increased by three orders of magnitude when the spins are tuned to the cavity
resonance, showing that energy relaxation can be engineered and controlled
on-demand. Our results provide a novel and general way to initialise spin
systems into their ground state, with applications in magnetic resonance and
quantum information processing. They also demonstrate that, contrary to popular
belief, the coupling between the magnetic dipole of a spin and the
electromagnetic field can be enhanced up to the point where quantum
fluctuations have a dramatic effect on the spin dynamics; as such our work
represents an important step towards the coherent magnetic coupling of
individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl
- …