1,130 research outputs found
Quantum Non-Gravity and Stellar Collapse
Observational indications combined with analyses of analogue and emergent
gravity in condensed matter systems support the possibility that there might be
two distinct energy scales related to quantum gravity: the scale that sets the
onset of quantum gravitational effects (related to the Planck scale) and
the much higher scale signalling the breaking of Lorentz symmetry. We
suggest a natural interpretation for these two scales: is the energy
scale below which a special relativistic spacetime emerges, is the scale
below which this spacetime geometry becomes curved. This implies that the first
`quantum' gravitational effect around could simply be that gravity is
progressively switched off, leaving an effective Minkowski quantum field theory
up to much higher energies of the order of . This scenario may have
important consequences for gravitational collapse, inasmuch as it opens up new
possibilities for the final state of stellar collapse other than an evaporating
black hole.Comment: 6 pages, 2 figures. v2: Partially restructured; potentially
observable consequence added. Several clarifications + 3 new references. To
appear in Found. of Phy
Quasi-normal mode analysis in BEC acoustic black holes
We perform a quasi-normal mode analysis of black hole configurations in
Bose-Einstein condensates (BEC). In this analysis we use the full Bogoliubov
dispersion relation, not just the hydrodynamic or geometric approximation. We
restrict our attention to one-dimensional flows in BEC with step-like
discontinuities. For this case we show that in the hydrodynamic approximation
quasi-normal modes do not exist. The full dispersion relation, however, allows
the existence of quasi-normal modes. Remarkably, the spectrum of these modes is
not discrete but continuous.Comment: 7 pages, 3 figure
Wormhole effective interactions in anti-de Sitter spacetime
The effects of asymptotically anti-de Sitter wormholes in low-energy field theory are calculated in full detail for three different matter contents: a conformal scalar field, an electromagnetic field and gravitons. There exists a close relation between the choice of vacuum for the matter fields and the selection of a basis of the Hilbert space of anti-de Sitter wormholes. In the presence of conformal matter (i.e., conformal scalar or electromagnetic fields), this relation allows us to interpret the elements of these bases as wormhole states containing a given number of particles. This interpretation is subject to the same kind of ambiguity in the definition of particle as that arising from quantum field theory in curved spacetime. In the case of gravitons, owing to the non-conformal coupling, it is not possible to describe wormhole states in terms of their particle content
Regularization of fluctuations near the sonic horizon due to the quantum potential and its influence on the Hawking radiation
We consider dynamics of fluctuations in transonically accelerating
Bose-Einstein condensates and luminous liquids (coherent light propagating in a
Kerr nonlinear medium) using the hydrodynamic approach. It is known that
neglecting the quantum potential (QP) leads to a singular behavior of quantum
and classical fluctuations in the vicinity of the Mach (sonic) horizon, which
in turn gives rise to the Hawking radiation. The neglect of QP is well founded
at not too small distances from the horizon, where is the
healing length. Taking the QP into account we show that a second characteristic
length exists, such that the linear fluctuation modes become
regularized for . At the modes keep their singular
behavior, which however is influenced by the QP. As a result we find a
deviation of the high frequency tail of the spectrum of Hawking radiation from
Planck's black body radiation distribution. Similar results hold for the wave
propagation in Kerr nonlinear media where the length and exist due
to the nonlinearity.Comment: 23 pages, 2 figure
Analog black holes in flowing dielectrics
We show that a flowing dielectric medium with a linear response to an
external electric field can be used to generate an analog geometry that has
many of the formal properties of a Schwarzschild black hole for light rays, in
spite of birefringence. We also discuss the possibility of generating these
analog black holes in the laboratory.Comment: Revtex4 file, 7 pages, 4 eps figures, a few changes in presentation,
some references added, conclusions unchange
Curved geometry and Graphs
Quantum Graphity is an approach to quantum gravity based on a background
independent formulation of condensed matter systems on graphs. We summarize
recent results obtained on the notion of emergent geometry from the point of
view of a particle hopping on the graph. We discuss the role of connectivity in
emergent Lorentzian perturbations in a curved background and the Bose--Hubbard
(BH) model defined on graphs with particular symmetries.Comment: are welcome. 4pp, 2 fig. Proceedings of Loops'11 Conference, Madri
Analogue Cosmological Particle Creation: Quantum Correlations in Expanding Bose Einstein Condensates
We investigate the structure of quantum correlations in an expanding Bose
Einstein Condensate (BEC) through the analogue gravity framework. We consider
both a 3+1 isotropically expanding BEC as well as the experimentally relevant
case of an elongated, effectively 1+1 dimensional, expanding condensate. In
this case we include the effects of inhomogeneities in the condensate, a
feature rarely included in the analogue gravity literature. In both cases we
link the BEC expansion to a simple model for an expanding spacetime and then
study the correlation structure numerically and analytically (in suitable
approximations). We also discuss the expected strength of such correlation
patterns and experimentally feasible BEC systems in which these effects might
be detected in the near future.Comment: Reference adde
Actuarial Senescence In A Dimorphic Bird: Different Rates Of Ageing In Morphs With Discrete Reproductive Strategies
It is often hypothesized that intra-sexual competition accelerates actuarial senescence, or the increase in mortality rates with age. However, an alternative hypothesis is that parental investment is more important to determining senescence rates. We used a unique model system, the white-throated sparrow (Zonotrichia albicollis), to study variation in actuarial senescence. In this species, genetically determined morphs display discrete mating strategies and disassortative pairing, providing an excellent opportunity to test the predictions of the above hypotheses. Compared to tan-striped males, white-striped males are more polygynous and aggressive, and less parental. Tan-striped females receive less parental support, and invest more into parental care than white-striped females, which are also more aggressive. Thus, higher senescence rates in males and white-striped birds would support the intra-sexual competition hypothesis, whereas higher senescence rates in females and tan-striped birds would support the parental investment hypothesis. White-striped males showed the lowest rate of actuarial senescence. Tan-striped females had the highest senescence rate, and tan-striped males and white-striped females showed intermediate, relatively equal rates. Thus, results were inconsistent with sexual selection and competitive strategies increasing senescence rates, and instead indicate that senescence may be accelerated by female-biased parental care, and lessened by sharing of parental duties
About Locality and the Relativity Principle Beyond Special Relativity
Locality of interactions is an essential ingredient of Special Relativity.
Recently, a new framework under the name of relative locality
\cite{AmelinoCamelia:2011bm} has been proposed as a way to consider Planckian
modifications of the relativistic dynamics of particles. We note in this paper
that the loss of absolute locality is a general feature of theories beyond
Special Relativity with an implementation of a relativity principle. We give an
explicit construction of such an implementation and compare it both with the
previously mentioned framework of relative locality and the so-called Doubly
Special Relativity theories.Comment: 10 pages, no figure
Series solutions for a static scalar potential in a Salam-Sezgin Supergravitational hybrid braneworld
The static potential for a massless scalar field shares the essential
features of the scalar gravitational mode in a tensorial perturbation analysis
about the background solution. Using the fluxbrane construction of [8] we
calculate the lowest order of the static potential of a massless scalar field
on a thin brane using series solutions to the scalar field's Klein Gordon
equation and we find that it has the same form as Newton's Law of Gravity. We
claim our method will in general provide a quick and useful check that one may
use to see if their model will recover Newton's Law to lowest order on the
brane.Comment: 5 pages, no figure
- …