504 research outputs found
Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic pseudo-differential operators
We obtain a complete asymptotic expansion of the integrated density of states
of operators of the form H =(-\Delta)^w +B in R^d. Here w >0, and B belongs to
a wide class of almost-periodic self-adjoint pseudo-differential operators of
order less than 2w. In particular, we obtain such an expansion for magnetic
Schr\"odinger operators with either smooth periodic or generic almost-periodic
coefficients.Comment: 47 pages. arXiv admin note: text overlap with arXiv:1004.293
Yang-Mills action from minimally coupled bosons on R^4 and on the 4D Moyal plane
We consider bosons on Euclidean R^4 that are minimally coupled to an external
Yang-Mills field. We compute the logarithmically divergent part of the cut-off
regularized quantum effective action of this system. We confirm the known
result that this term is proportional to the Yang-Mills action.
We use pseudodifferential operator methods throughout to prepare the ground
for a generalization of our calculation to the noncommutative four-dimensional
Moyal plane (also known as noncommutative flat space). We also include a
detailed comparison of our cut-off regularization to heat kernel techniques.
In the case of the noncommutative space, we complement the usual technique of
asymptotic expansion in the momentum variable with operator theoretic arguments
in order to keep separated quantum from noncommutativity effects. We show that
the result from the commutative space R^4 still holds if one replaces all
pointwise products by the noncommutative Moyal product.Comment: 37 pages, v2 contains an improved treatment of the theta function in
Appendix A.
Analytic and Reidemeister torsion for representations in finite type Hilbert modules
For a closed Riemannian manifold we extend the definition of analytic and
Reidemeister torsion associated to an orthogonal representation of fundamental
group on a Hilbert module of finite type over a finite von Neumann algebra. If
the representation is of determinant class we prove, generalizing the
Cheeger-M\"uller theorem, that the analytic and Reidemeister torsion are equal.
In particular, this proves the conjecture that for closed Riemannian manifolds
with positive Novikov-Shubin invariants, the L2 analytic and Reidemeister
torsions are equal.Comment: 78 pages, AMSTe
The Gabor wave front set of compactly supported distributions
We show that the Gabor wave front set of a compactly supported distribution
equals zero times the projection on the second variable of the classical wave
front set
Conormal distributions in the Shubin calculus of pseudodifferential operators
We characterize the Schwartz kernels of pseudodifferential operators of
Shubin type by means of an FBI transform. Based on this we introduce as a
generalization a new class of tempered distributions called Shubin conormal
distributions. We study their transformation behavior, normal forms and
microlocal properties.Comment: 23 page
Uniformization and an Index Theorem for Elliptic Operators Associated with Diffeomorphisms of a Manifold
We consider the index problem for a wide class of nonlocal elliptic operators
on a smooth closed manifold, namely differential operators with shifts induced
by the action of an isometric diffeomorphism. The key to the solution is the
method of uniformization: We assign to the nonlocal problem a
pseudodifferential operator with the same index, acting in sections of an
infinite-dimensional vector bundle on a compact manifold. We then determine the
index in terms of topological invariants of the symbol, using the Atiyah-Singer
index theorem.Comment: 16 pages, no figure
Detailed balance in Horava-Lifshitz gravity
We study Horava-Lifshitz gravity in the presence of a scalar field. When the
detailed balance condition is implemented, a new term in the gravitational
sector is added in order to maintain ultraviolet stability. The
four-dimensional theory is of a scalar-tensor type with a positive cosmological
constant and gravity is nonminimally coupled with the scalar and its gradient
terms. The scalar field has a double-well potential and, if required to play
the role of the inflation, can produce a scale-invariant spectrum. The total
action is rather complicated and there is no analog of the Einstein frame where
Lorentz invariance is recovered in the infrared. For these reasons it may be
necessary to abandon detailed balance. We comment on open problems and future
directions in anisotropic critical models of gravity.Comment: 10 pages. v2: discussion expanded and improved, section on
generalizations added, typos corrected, references added, conclusions
unchange
Algebraic Geometry Approach to the Bethe Equation for Hofstadter Type Models
We study the diagonalization problem of certain Hofstadter-type models
through the algebraic Bethe ansatz equation by the algebraic geometry method.
When the spectral variables lie on a rational curve, we obtain the complete and
explicit solutions for models with the rational magnetic flux, and discuss the
Bethe equation of their thermodynamic flux limit. The algebraic geometry
properties of the Bethe equation on high genus algebraic curves are
investigated in cooperationComment: 28 pages, Latex ; Some improvement of presentations, Revised version
with minor changes for journal publicatio
Quantum Graphs II: Some spectral properties of quantum and combinatorial graphs
The paper deals with some spectral properties of (mostly infinite) quantum
and combinatorial graphs. Quantum graphs have been intensively studied lately
due to their numerous applications to mesoscopic physics, nanotechnology,
optics, and other areas.
A Schnol type theorem is proven that allows one to detect that a point
belongs to the spectrum when a generalized eigenfunction with an subexponential
growth integral estimate is available. A theorem on spectral gap opening for
``decorated'' quantum graphs is established (its analog is known for the
combinatorial case). It is also shown that if a periodic combinatorial or
quantum graph has a point spectrum, it is generated by compactly supported
eigenfunctions (``scars'').Comment: 4 eps figures, LATEX file, 21 pages Revised form: a cut-and-paste
blooper fixe
- …