519 research outputs found

    Bound States of the Klein-Gordon Equation for Woods-Saxon Potential With Position Dependent Mass

    Full text link
    The effective mass Klein-Gordon equation in one dimension for the Woods-Saxon potential is solved by using the Nikiforov-Uvarov method. Energy eigenvalues and the corresponding eigenfunctions are computed. Results are also given for the constant mass case.Comment: 13 page

    Effective-Mass Dirac Equation for Woods-Saxon Potential: Scattering, Bound States and Resonances

    Get PDF
    Approximate scattering and bound state solutions of the one-dimensional effective-mass Dirac equation with the Woods-Saxon potential are obtained in terms of the hypergeometric-type functions. Transmission and reflection coefficients are calculated by using behavior of the wave functions at infinity. The same analysis is done for the constant mass case. It is also pointed out that our results are in agreement with those obtained in literature. Meanwhile, an analytic expression is obtained for the transmission resonance and observed that the expressions for bound states and resonances are equal for the energy values E=±mE=\pm m.Comment: 20 pages, 6 figure

    Scattering of Woods-Saxon Potential in Schrodinger Equation

    Full text link
    The scattering solutions of the one-dimensional Schrodinger equation for the Woods-Saxon potential are obtained within the position-dependent mass formalism. The wave functions, transmission and reflection coefficients are calculated in terms of Heun's function. These results are also studied for the constant mass case in detail.Comment: 14 page

    Effective Mass Dirac-Morse Problem with any kappa-value

    Full text link
    The Dirac-Morse problem are investigated within the framework of an approximation to the term proportional to 1/r21/r^2 in the view of the position-dependent mass formalism. The energy eigenvalues and corresponding wave functions are obtained by using the parametric generalization of the Nikiforov-Uvarov method for any κ\kappa-value. It is also studied the approximate energy eigenvalues, and corresponding wave functions in the case of the constant-mass for pseudospin, and spin cases, respectively.Comment: 12 page

    Size induced metal insulator transition in nanostructured Niobium thin films: Intragranular and intergranular contributions

    Full text link
    With a reduction in the average grain size in nanostructured films of elemental Nb, we observe a systematic crossover from metallic to weakly-insulating behavior. An analysis of the temperature dependence of the resistivity in the insulating phase clearly indicates the existence of two distinct activation energies corresponding to inter-granular and intra-granular mechanisms of transport. While the high temperature behavior is dominated by grain boundary scattering of the conduction electrons, the effect of discretization of energy levels due to quantum confinement shows up at low temperatures. We show that the energy barrier at the grain boundary is proportional to the width of the largely disordered inter-granular region, which increases with a decrease in the grain size. For a metal-insulator transition to occur in nano-Nb due to the opening up of an energy gap at the grain boundary, the critical grain size is ~ 8nm and the corresponding grain boundary width is ~ 1.1nm

    Analytical Solutions of Klein-Gordon Equation with Position-Dependent Mass for q-Parameter Poschl-Teller potential

    Get PDF
    The energy eigenvalues and the corresponding eigenfunctions of the one-dimensional Klein-Gordon equation with q-parameter Poschl-Teller potential are analytically obtained within the position-dependent mass formalism. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations by choosing a mass distribution.Comment: 10 page

    Structure of the crust and African slab beneath the central Anatolian plateau from receiver functions: New insights on isostatic compensation and slab dynamics

    Get PDF
    The central Anatolian plateau in Turkey is a region with a long history of subduction, continental collision, accretion of continental fragments, and slab tearing and/or breakoff and tectonic escape. Central Anatolia is currently characterized as a nascent plateau with widespread Neogene volcanism and predominantly transtensional deformation. To elucidate the present-day crustal and upper mantle structure of this region, teleseismic receiver functions were calculated from 500 seismic events recorded on 92 temporary and permanent broadband seismic stations. Overall, we see a good correlation between crustal thickness and elevation throughout central Anatolia, indicating that the crust may be well compensated throughout the region. We observe the thickest crust beneath the Taurus Mountains (>40 km); it thins rapidly to the south in the Adana Basin and Arabian plate and to the northwest across the Inner Tauride suture beneath the Tuz Gölü Basin and Kırşehir block. Within the Central Anatolian Volcanic Province, we observe several low seismic velocity layers ranging from 15 to 25 km depth that spatially correlate with the Neogene volcanism in the region, and may represent crustal magma reservoirs. Beneath the central Taurus Mountains, we observe a positive amplitude, subhorizontal receiver function arrival below the Anatolian continental Moho at ∼50–80 km that we interpret as the gently dipping Moho of the subducting African lithosphere abruptly ending near the northernmost extent of the central Taurus Mountains. We suggest that the uplift of the central Taurus Mountains (∼2 km since 8 Ma), which are capped by flat-lying carbonates of late Miocene marine units, can be explained by an isostatic uplift during the late Miocene–Pliocene followed by slab breakoff and subsequent rebound coeval with the onset of faster uplift rates during the late Pliocene–early Pleistocene. The Moho signature of the subducting African lithosphere terminates near the southernmost extent of the Central Anatolian Volcanic Province, where geochemical signatures in the Quaternary volcanics indicate that asthenospheric material is rising to shallow mantle depths

    Creation of 3D Digital Anthropomorphic Phantoms which Model Actual Patient Non-rigid Body Motion as Determined from MRI and Position Tracking Studies of Volunteers

    Get PDF
    Background: Patient motion during emission imaging can create artifacts in the reconstructed emission distributions, which may mislead the diagnosis. For example, in myocardial-perfusion imaging, these artifacts can be mistaken for defects. Various software and hardware approaches have been developed to detect and compensate for motion. There are various ways of testing the effectiveness of motion correction methods applied in emission tomography, including the use of realistic digital anthropomorphic phantoms. Purpose: The purpose of this study was to create 3D digital anthropomorphic phantoms based on MRI data of volunteers undergoing a series of clinically relevant motions. These phantoms with combined position tracking were used to investigate both imaging-data-driven and motion tracking strategies to estimate and correct for patient motion. Methods: MRI scans were obtained of volunteers undergoing a series of clinically relevant movements. During the MRI, the motions were recorded by near-infra-red cameras tracking using external markers on the chest and abdomen. Individual-specific extended cardiac-torso (XCAT) phantoms were created fit to our volunteer MRI imaging data representing pre- and post-motion states. These XCAT phantoms were then used to generate activity and attenuation distributions. Monte Carlo methods will then be performed to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies. Results: Three volunteers were scanned in the MRI with concurrent external motion tracking. Each volunteer performed five separate motions including an axial slide, roll, shoulder twist, spine bend, and arm motion. These MRI scans were then manually digitalized into 3D anthropomorphic XCAT phantoms. Activity and attenuation distributions were created for each XCAT phantom, representing fifteen individual-specific motions. Conclusions: Our results will be combined with the external motion tracking data to determine if external motion tracking accurately reflects heart position in patients undergoing cardiac SPECT imaging. This data will also be used to evaluate other motion correction methods in the future
    corecore