124 research outputs found

    Structural, Optical and Electrochromic Properties of Sol–Gel V

    Get PDF
    Vanadium pentoxide thin films are prepared by the sol–gel route by dissolving V2O5 powder (99.5% purity) in H2O2 solution. The solution is spin-coated on glass substrates for optical (UV–VIS–NIR) and XRD analysis, and on ITOcoated glass substrates for electrochromic measurements. The samples are then annealed at 150°C for 1 hour. The resulting films have a yellow-orange color, typical of polycrystalline V2O5. XRD measurements have shown that after annealing in air at 400°C the structure of the films has a c-axis preferred orientation, the (0 0 1)-type planes lying parallel to the substrate. SEM analysis revealed a smooth surface. The films’ optical and physical constants (n, α, Eg, the thickness d and the mean thickness inhomogeneity s) are calculated using a simple and accurate method based on the transmission spectrum alone. The films’ electrochromism is studied using cyclic voltammetry (CV) and chronoamperometry in propylene carbonate solution containing 1 mol/l LiCIO4. The films show reversible multichromism (yellow–green–blue) upon Li+ ion insertion/extraction. The absorbance of films colored at three different potentials is measured in the UV–VIS–PIR wavelength range, and this study shows that the changes in the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works

    Diagnosis of Fanconi Anemia: Mutation Analysis by Multiplex Ligation-Dependent Probe Amplification and PCR-Based Sanger Sequencing

    Get PDF
    Fanconi anemia (FA) is a rare inherited disease characterized by developmental defects, short stature, bone marrow failure, and a high risk of malignancies. FA is heterogeneous: 15 genetic subtypes have been distinguished so far. A clinical diagnosis of FA needs to be confirmed by testing cells for sensitivity to cross-linking agents in a chromosomal breakage test. As a second step, DNA testing can be employed to elucidate the genetic subtype of the patient and to identify the familial mutations. This knowledge allows preimplantation genetic diagnosis (PGD) and enables prenatal DNA testing in future pregnancies. Although simultaneous testing of all FA genes by next generation sequencing will be possible in the near future, this technique will not be available immediately for all laboratories. In addition, in populations with strong founder mutations, a limited test using Sanger sequencing and MLPA will be a cost-effective alternative. We describe a strategy and optimized conditions for the screening of FANCA, FANCB, FANCC, FANCE, FANCF, and FANCG and present the results obtained in a cohort of 54 patients referred to our diagnostic service since 2008. In addition, the follow up with respect to genetic counseling and carrier screening in the families is discussed

    Schottky Diodes and Thin Films Based on Copolymer: Poly(aniline-co-toluidine)

    Get PDF
    Poly(aniline-co-o-toluidine) (PANI-co-POT) thin films were deposited on indium tin oxide- (ITO-) coated glass substrates by electrochemical polymerization under cyclic voltammetric conditions from aniline-co-o-toluidine monomer in an aqueous solution of HCl as a supporting electrolyte. These measurements showed that the optical band gap of the copolymer films is on the order of 2.65 eV. On the other hand, ITO/PANI-co-POT/Al devices were fabricated by thermal evaporation of Aluminum circular electrodes on the as-deposited PANI-co-POT films. The Current-Voltage characteristics of these devices are nonlinear. The diode parameters were calculated from I-V characteristics using the modified Shockley equation. The C-F characteristics were also measured

    Dielectric Behavior of Ceramic (BST)/Epoxy Thick Films

    Get PDF
    Composite materials were made by mixing powders of Ba1−xSrxTiO3 (x=0.2 and 0.4) ceramics and epoxy resin with various volume fractions (vol%). Dielectric measurements of these composites were performed as a function of filler ratio in the range 100–360°K at 10 KHz. The dielectric constant of the composite increased with increasing volume fraction varies slightly with temperature. The 20 vol% of BST(0.4)-epoxy composite had the highest dielectric constant of 19.4 and dielectric loss tangent of 0.027. Among the dielectric mixing models presented, the model of Lichtenecker shows the best fit to the experimental data for both composites

    When an Intramolecular Disulfide Bridge Governs the Interaction of DUOX2 with Its Partner DUOXA2

    Full text link
    Aims: The dual oxidase 2 (DUOX2) protein belongs to the NADPH oxidase (NOX) family. As H2O2 generator, it plays a key role in both thyroid hormone biosynthesis and innate immunity. DUOX2 forms with its maturation factor, DUOX activator 2 (DUOXA2), a stable complex at the cell surface that is crucial for the H2O2-generating activity, but the nature of their interaction is unknown. The contribution of some cysteine residues located in the N-terminal ectodomain of DUOX2 in a surface protein?protein interaction is suggested. We have investigated the involvement of different cysteine residues in the formation of covalent bonds that could be of critical importance for the function of the complex. Results: We report the identification and the characterization of an intramolecular disulfide bond between cys-124 of the N-terminal ectodomain and cys-1162 of an extracellular loop of DUOX2, which has important functional implications in both export and activity of DUOX2. This intramolecular bridge provides structural support for the formation of interdisulfide bridges between the N-terminal domain of DUOX2 and the two extracellular loops of its partner, DUOXA2. Innovation: Both stability and function of the maturation factor, DUOXA2, are dependent on the oxidative folding of DUOX2, indicating that DUOX2 displays a chaperone-like function with respect to its partner. Conclusions: The oxidative folding of DUOX2 that takes place in the endoplasmic reticulum (ER) appears to be a key event in the trafficking of the DUOX2/DUOXA2 complex as it promotes an appropriate conformation of the N-terminal region, which is propitious to subsequent covalent interactions with the maturation factor, DUOXA2. Antioxid. Redox Signal. 23, 724?733.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140308/1/ars.2015.6265.pd

    Structural, Optical and Electrochromic Properties of Nanocrystalline TiO

    Get PDF
    Nanocrystalline TiO2 thin filmswere prepared by spin coating on covered glass substrates with an indium tin oxide (ITO) layer. The structural, electrochromic and optical properties of the films were investigated. The films are crystallized predominantly in the anatase phase with lattice parameters a = b = 0.378 nm and c = 0.958 nm . The crystallite size was found to be of the order of 14 nm. The films showed reversible coloration/bleaching cycles as demonstrated by cyclic voltametry and current–time transients. The transmission of the blue colored films decreased and their absorption edge was less sharp and shifted to higher wavelengths as a result of the intercalation of Li+ ions

    Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion

    Get PDF
    Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DD

    Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide

    Get PDF
    The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) can cause resistance to the alkylating drug temozolomide (TMZ). The purpose of this study was to determine the relationship between the MGMT status, determined by means of several techniques and methods, and the cytotoxic response to TMZ in 11 glioblastoma multiforme (GBM) cell lines and 5 human tumour cell lines of other origins. Cell survival was analysed by clonogenic assay. The MGMT protein levels were assessed by western blot analysis. The MGMT promoter methylation levels were determined using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and quantitative real-time methylation-specific PCR (qMSP). On the basis of the results of these techniques, six GBM cell lines were selected and subjected to bisulphite sequencing. The MGMT protein was detected in all TMZ-resistant cell lines, whereas no MGMT protein could be detected in cell lines that were TMZ sensitive. The MS-MLPA results were able to predict TMZ sensitivity in 9 out of 16 cell lines (56%). The qMSP results matched well with TMZ sensitivity in 11 out of 12 (92%) glioma cell lines. In addition, methylation as detected by bisulphite sequencing seemed to be predictive of TMZ sensitivity in all six cell lines analysed (100%). The MGMT protein expression more than MGMT promoter methylation status predicts the response to TMZ in human tumour cell line
    corecore