5 research outputs found

    Conformal Symmetry and the Three Point Function for the Gravitational Axial Anomaly

    Get PDF
    This work presents a first study of a radiative calculation for the gravitational axial anomaly in the massless Abelian Higgs model. The two loop contribution to the anomalous correlation function of one axial current and two energy-momentum tensors, , is computed at an order that involves only internal matter fields. Conformal properties of massless field theories are used in order to perform the Feynman diagram calculations in the coordinate space representation. The two loop contribution is found not to vanish, due to the presence of two independent tensor structures in the anomalous correlator.Comment: 34 pages, 5 figures, RevTex, Minor changes, Final version for Phys. Rev.

    Predictions of SUSY Masses in the Minimal SUSY GUT

    Full text link
    The MSSM distinguishes itself from other GUT's by a successful prediction of many unrelated phenomena with a minimum number of parameters. Among them: a) Unification of the couplings constants; b)Unification of the masses; c) Proton decay; d) Electroweak symmetry breaking. A combined fit of the free parameters in the MSSM to these low energy constraints shows that the MSSM model can satisfy these constraints simultaneously. From the fitted parameters the masses of the as yet unobserved superpartners of the SM particles are predicted. The 2nd order QCD coupling constant is required to be between 0.108 and 0.132. It is shown that a top mass of 174±16174\pm16 GeV, as suggested recently by the CDF Collaboration, constrains the mixing angle between the Higgs doublets in the MSSM to: 1.2<\tb<5.5 at the 90% C.L.. The most probable value corresponds to \tb = 1.56, which leads to a stop mass below the top mass. In this case the stop production in ppˉp\bar{p} collisions would contribute to the top signature. This could be an explanation for the large effective ttˉt\bar{t} cross section observed by CDF.Comment: latex + eps fig IEKP-KA/94-0
    corecore