30 research outputs found

    Nonlinear Dynamics in Distributed Systems

    Full text link
    We build on a previous statistical model for distributed systems and formulate it in a way that the deterministic and stochastic processes within the system are clearly separable. We show how internal fluctuations can be analysed in a systematic way using Van Kanpen's expansion method for Markov processes. We present some results for both stationary and time-dependent states. Our approach allows the effect of fluctuations to be explored, particularly in finite systems where such processes assume increasing importance.Comment: Two parts: 8 pages LaTeX file and 5 (uuencoded) figures in Postscript forma

    Gene therapy for primary immune deficiencies: a Canadian perspective

    Full text link
    The use of gene therapy (GT) for the treatment of primary immune deficiencies (PID) including severe combined immune deficiency (SCID) has progressed significantly in the recent years. In particular, long-term studies have shown that adenosine deaminase (ADA) gene delivery into ADA-deficient hematopoietic stem cells that are then transplanted into the patients corrects the abnormal function of the ADA enzyme, which leads to immune reconstitution. In contrast, the outcome was disappointing for patients with X-linked SCID, Wiskott–Aldrich syndrome and chronic granulomatous disease who received GT followed by autologous gene corrected transplantations, as many developed hematological malignancies. The malignancies were attributed to the predilection of the viruses used for gene delivery to integrated at oncogenic areas. The availability of safer and more efficient self-inactivating lentiviruses for gene delivery has reignited the interest in GT for many PID that are now in various stages of pre-clinical studies and clinical trials. Moreover, advances in early diagnosis of PID and gene editing technology coupled with enhanced abilities to generate and manipulate stem cells ex vivo are expected to further contribute to the benefit of GT for PID. Here we review the past, the present and the future of GT for PID, with particular emphasis on the Canadian perspective

    Internal Markets

    Full text link

    T-cell receptor-induced phosphorylation of the zeta chain is efficiently promoted by ZAP-70 but not Syk

    No full text
    International audienceEngagement of the T-cell receptor (TCR) results in the activation of Lck/Fyn and ZAP-70/Syk tyrosine kinases. Lck-mediated tyrosine phosphorylation of signaling motifs (ITAMs) in the CD3-zeta subunits of the TCR is an initial step in the transduction of signaling cascades. However, zeta phosphorylation is also promoted by ZAP-70, as TCR-induced zeta phosphorylation is defective in ZAP-70-deficient T cells. We show that this defect is corrected by stable expression of ZAP-70, but not Syk, in primary and transformed T cells. Indeed, these proteins are differentially coupled to the TCR with a 5- to 10-fold higher association of ZAP-70 with zeta as compared to Syk. Low-level Syk-zeta binding is associated with significantly less Lck coupled to the TCR. Moreover, diminished coupling of Lck to zeta correlates with a poor phosphorylation of the positive regulatory tyr352 residue of Syk. Thus, recruitment of Lck into the TCR complex with subsequent zeta chain phosphorylation is promoted by ZAP-70 but not Syk. Importantly, the presence of ZAP-70 positively regulates the TCR-induced tyrosine phosphorylation of Syk. The interplay between Syk and ZAP-70 in thymocytes, certain T cells, and B-chronic lymphocytic leukemia cells, in which they are coexpressed, will therefore modulate the amplitude of antigen-mediated receptor signaling
    corecore