1,238 research outputs found
Fock representation of the renormalized higher powers of white noise and the Virasoro--Zamolodchikov----Lie algebra
The identification of the --Lie algebra of the renormalized higher powers
of white noise (RHPWN) and the analytic continuation of the second quantized
Virasoro--Zamolodchikov----Lie algebra of conformal field theory
and high-energy physics, was recently established in \cite{id} based on results
obtained in [1] and [2]. In the present paper we show how the RHPWN Fock
kernels must be truncated in order to be positive definite and we obtain a Fock
representation of the two algebras. We show that the truncated renormalized
higher powers of white noise (TRHPWN) Fock spaces of order host the
continuous binomial and beta processes
Quantum Markov fields on graphs
We introduce generalized quantum Markov states and generalized d-Markov
chains which extend the notion quantum Markov chains on spin systems to that on
-algebras defined by general graphs. As examples of generalized d-Markov
chains, we construct the entangled Markov fields on tree graphs. The concrete
examples of generalized d-Markov chains on Cayley trees are also investigated.Comment: 23 pages, 1 figure. accepted to "Infinite Dimensional Anal. Quantum
Probability & Related Topics
A stochastic golden rule and quantum Langevin equation for the low density limit
A rigorous derivation of quantum Langevin equation from microscopic dynamics
in the low density limit is given. We consider a quantum model of a microscopic
system (test particle) coupled with a reservoir (gas of light Bose particles)
via interaction of scattering type. We formulate a mathematical procedure (the
so-called stochastic golden rule) which allows us to determine the quantum
Langevin equation in the limit of large time and small density of particles of
the reservoir. The quantum Langevin equation describes not only dynamics of the
system but also the reservoir. We show that the generator of the corresponding
master equation has the Lindblad form of most general generators of completely
positive semigroups
On Quantum Markov Chains on Cayley tree II: Phase transitions for the associated chain with XY-model on the Cayley tree of order three
In the present paper we study forward Quantum Markov Chains (QMC) defined on
a Cayley tree. Using the tree structure of graphs, we give a construction of
quantum Markov chains on a Cayley tree. By means of such constructions we prove
the existence of a phase transition for the XY-model on a Cayley tree of order
three in QMC scheme. By the phase transition we mean the existence of two now
quasi equivalent QMC for the given family of interaction operators
.Comment: 34 pages, 1 figur
The structure of strongly additive states and Markov triplets on the CAR algebra
We find a characterization of states satisfying equality in strong
subadditivity of entropy and of Markov triplets on the CAR algebra. For even
states, a more detailed structure of the density matrix is given.Comment: 11 page
Probabilità quantistica
I risultati stabiliti dallo studio assiomatico, e cioè l'esistenza di una molteplicità di modelli probabilistici empiricamente inequivalenti suggeriscono di ampliare
lo scopo della teoria delle probabilità, a simiglianza di quanto è avvenuto
in geometria, dallo studio di un singolo modello (quello euclideo o quello
kolmogoroviano) allo studio di una molteplicit a di possibili modelli e delle
loro relazioni. Mentre nella prima parte della presente esposizione ci si e
limitati agli aspetti storici e, per quanto riguarda la probabilità quantistica,
concettuali, il finne della presente esposizione quello di chiarire la struttura
matematica della probabilità algebrica nel suo complesso e le sue relazioni
con la probabilità classica. Nell'esposizione cercheremo di sottolineare come
alcune delle nuove idee introdotte dalla probabilità quantistica sono emerse
da motivazioni puramente matematiche ed altre dal tentativo di risolvere
specifici problemi posti dalla fisica
- …