78 research outputs found
Energy exchange between electron and molecular gases
Energy transfer between electron and molecular gase
Сравнительный анализ ИТ-продуктов для страхового сектора российской экономики
The article is devoted to the comparative analysis of IT-products for the insurance sector of the Russian economy. Within the research the comparative analysis of the software products focused on the insurance sector of economy is carried out, the main criteria for the comparative analysis of information systems for the insurance sector are developed and proved, the expert assessment of four information systems for the insurance sector of the Russian economy is carried out by the method of the analysis of hierarchies.El artículo está dedicado a un análisis comparativo de productos de TI para el sector de seguros de la economía rusa. En el marco del estudio, se realizó un análisis comparativo de productos de software orientados al sector de seguros de la economía, se desarrollaron y corroboraron los criterios principales para un análisis comparativo de los sistemas de información para el sector de seguros, y se realizó una evaluación experta de cuatro sistemas de información para el sector de seguros de la economía rusa mediante el método de análisis de jerarquía.Статья посвящена сравнительному анализу ИТ-продуктов для страхового сектора российской экономики. В рамках исследования проведен сравнительный анализ программных продуктов, ориентированных на страховой сектор экономики, разработаны и обоснованы основные критерии для сравнительного анализа информационных систем для страхового сектора, проведена экспертная оценка четырех информационных систем для страхового сектора российской экономики методом анализа иерархий
The Evolution of Artificial Intelligence and the Possibility of its Application in Cyber Games
Artificial intelligence, as a separate field of research, is currently experiencing a boom - new methods of machine learning and hardware are emerging and improving, and the results achieved change the life of society. Machine translation, handwriting recognition, speech recognition are changing our reality. The work of creating unmanned vehicles, voice assistants and other devices using these technologies is in an active process. The article examines the historical context of the artificial intelligence development, it evaluates the possibilities of its introduction into cyber games, as a safe and effective platform for testing new methods of machine learning. The promotion of such projects can increase the reputation of development companies, ensure increased user confidence in other products and, with a competent marketing strategy, cause a significant public resonance among video game fans, providing the developer with economic profit
Data-driven approach for creating synthetic electronic medical records
<p>Abstract</p> <p>Background</p> <p>New algorithms for disease outbreak detection are being developed to take advantage of full electronic medical records (EMRs) that contain a wealth of patient information. However, due to privacy concerns, even anonymized EMRs cannot be shared among researchers, resulting in great difficulty in comparing the effectiveness of these algorithms. To bridge the gap between novel bio-surveillance algorithms operating on full EMRs and the lack of non-identifiable EMR data, a method for generating complete and synthetic EMRs was developed.</p> <p>Methods</p> <p>This paper describes a novel methodology for generating complete synthetic EMRs both for an outbreak illness of interest (tularemia) and for background records. The method developed has three major steps: 1) synthetic patient identity and basic information generation; 2) identification of care patterns that the synthetic patients would receive based on the information present in real EMR data for similar health problems; 3) adaptation of these care patterns to the synthetic patient population.</p> <p>Results</p> <p>We generated EMRs, including visit records, clinical activity, laboratory orders/results and radiology orders/results for 203 synthetic tularemia outbreak patients. Validation of the records by a medical expert revealed problems in 19% of the records; these were subsequently corrected. We also generated background EMRs for over 3000 patients in the 4-11 yr age group. Validation of those records by a medical expert revealed problems in fewer than 3% of these background patient EMRs and the errors were subsequently rectified.</p> <p>Conclusions</p> <p>A data-driven method was developed for generating fully synthetic EMRs. The method is general and can be applied to any data set that has similar data elements (such as laboratory and radiology orders and results, clinical activity, prescription orders). The pilot synthetic outbreak records were for tularemia but our approach may be adapted to other infectious diseases. The pilot synthetic background records were in the 4-11 year old age group. The adaptations that must be made to the algorithms to produce synthetic background EMRs for other age groups are indicated.</p
Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway
[EN] Myogenic regeneration occurs through a chain of events beginning with the output of satellite cells from quiescent state, formation of competent myoblasts and later fusion and differentiation into myofibres. Traditionally, growth factors are used to stimulate muscle regeneration but this involves serious off-target effects, including alterations in cell homeostasis and cancer. In this work, we have studied the use of zinc to trigger myogenic differentiation. We show that zinc promotes myoblast proliferation, differentiation and maturation of myofibres. We demonstrate that this process occurs through the PI3K/Akt pathway, via zinc stimulation of transporter Zip7. Depletion of zinc transporter Zip7 by RNA interference shows reduction of both PI3K/Akt signalling and a significant reduction of multinucleated myofibres and myotubes development. Moreover, we show that mature myofibres, obtained through stimulation with high concentrations of zinc, accumulate zinc and so we hypothesise their function as zinc reservoirs into the cell.P.R. and R.S. acknowledges support from the Spanish Ministry of Economy and Competitiveness (MINECO) (MAT2015-69315-C3-1-R). P.R. acknowledges the Fondo Europeo de Desarrollo Regional (FEDER). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. R.S. acknowledges the support from the Spanish MECD through the PRX16/00208 grant. MSS acknowledges support from the European Research Council (ERC - HealInSynergy 306990) and the UK Engineering and Physical Sciences Research Council (EPSRC - EP/P001114/1)Mnatsakanyan, H.; Sabater I Serra, R.; Rico Tortosa, PM.; Salmerón Sánchez, M. (2018). Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway. Scientific Reports. 8:1-14. https://doi.org/10.1038/s41598-018-32067-0S1148Frontera, W. R. & Ochala, J. Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 96, 183–195 (2015).Wolfe, R. R., Frontera, W. R. & Ochala, J. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 84, 475–82 (2006).Sciorati, C., Rigamonti, E., Manfredi, A. A. & Rovere-Querini, P. Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ. 23, 927–937 (2016).Wang, Y. X. & Rudnicki, M. A. Satellite cells, the engines of muscle repair. Nat. Rev. Mol. Cell Biol. 13, 127–133 (2011).Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).Dhawan, J. & Rando, T. A. Stem cells in postnatal myogenesis: Molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol. 15, 666–673 (2005).Yun, K. & Wold, B. Skeletal muscle determination and differentiation: Story of a core regulatory network and its context. Curr. Opin. Cell Biol. 8, 877–889 (1996).Gharaibeh, B. et al. Biological approaches to improve skeletal muscle healing after injury and disease. Birth Defects Res. Part C Embryo Today Rev. 96, 82–94 (2012).Schiaffino, S. & Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4 (2011).Sandri, M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda). 23, 160–70 (2008).Karalaki, M., Fili, S., Philippou, A. & Koutsilieris, M. Muscle regeneration: cellular and molecular events. In Vivo 23, 779–96 (2009).Fujio, Y. et al. Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol. Cell. Biol. 19, 5073–82 (1999).Wilson, E. M. & Rotwein, P. Control of MyoD function during initiation of muscle differentiation by an autocrine signaling pathway activated by insulin-like growth factor-II. J. Biol. Chem. 281, 29962–29971 (2006).Sun, L., Liu, L., Yang, X. & Wu, Z. Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation. J. Cell Sci. 117, 3021–3029 (2004).Milner, D. & Cameron, J. Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration. Curr. Top. Microbiol. Immunol. 367, 133–159 (2013).Liu, C. et al. PI3K/Akt signaling transduction pathway is involved in rat vascular smooth muscle cell proliferation induced by apelin-13. Acta Biochim Biophys Sin 42, 396–402 (2010).Eriksson, M., Taskinen, M. & Leppä, S. Mitogen Activated Protein Kinase-Dependent Activation of c-Jun and c-Fos is required for Neuronal differentiation but not for Growth and Stress Reposne in PC12 cells. J. Cell. Physiol. 207, 12–22 (2006).Arsic, N. et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in Vivo. Mol. Ther. 10, 844–854 (2004).Borselli, C. et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. USA 107, 3287–3292 (2010).Hanft, J. R. et al. Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J. Wound Care 17(30–2), 34–7 (2008).Simón-Yarza, T. et al. Vascular endothelial growth factor-delivery systems for cardiac repair: An overview. Theranostics 2, 541–552 (2012).Briquez, P. S., Hubbell, J. A. & Martino, M. M. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing. Adv. Wound Care 4, 479–489 (2015).Barthel, A., Ostrakhovitch, E. A., Walter, P. L., Kampkötter, A. & Klotz, L. O. Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: Mechanisms and consequences. Arch. Biochem. Biophys. 463, 175–182 (2007).Ostrakhovitch, E. A., Lordnejad, M. R., Schliess, F., Sies, H. & Klotz, L.-O. Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species. Arch. Biochem. Biophys. 397, 232–239 (2002).Kaur, K., Gupta, R., Saraf, S. A. & Saraf, S. K. Zinc: The metal of life. Compr. Rev. Food Sci. Food Saf. 13, 358–376 (2014).Coleman, J. E. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61, 897–946 (1992).Fukada, T. & Kambe, T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3, 662–674 (2011).Murakami, M. & Hirano, T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 99, 1515–1522 (2008).Hogstrand, C., Kille, P., Nicholson, R. I. & Taylor, K. M. Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol. Med. 15, 101–111 (2009).Kolenko, V., Teper, E., Kutikov, A. & Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol. 10, 219–26 (2013).Myers, S. A., Nield, A., Chew, G. S. & Myers, M. A. The zinc transporter, Slc39a7 (Zip7) is implicated in glycaemic control in skeletal muscle cells. Plos One 8 (2013).Kambe, T., Tsuji, T., Hashimoto, A. & Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 95, 749–784 (2015).Jinno, N., Nagata, M. & Takahashi, T. Marginal zinc deficiency negatively affects recovery from muscle injury in mice. Biol. Trace Elem. Res. 158, 65–72 (2014).Taylor, K. M., Hiscox, S., Nicholson, R. I., Hogstrand, C. & Kille, P. Protein Kinase CK2 Triggers Cytosolic Zinc Signaling Pathways by Phosphorylation of Zinc Channel ZIP7. Sci. Signal. 5, ra11–ra11 (2012).Yamasaki, S. et al. Zinc is a novel intracellular second messenger. J. Cell Biol. 177, 637–45 (2007).Sumitani, S., Goya, K., Testa, J. R., Kouhara, H. & Kasayama, S. Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts. Endocrinology 143, 820–828 (2002).Ohashi, K. et al. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp. Cell Res. 333, 228–237 (2015).Chesters, J. K. In Zinc in human biology 53, 109–118 (1989).Burattini, S. et al. C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. Eur. J. Histochem. 48, 223–233 (2004).Mnatsakanyan, H. et al. Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry. ACS Appl. Mater. Interfaces 7, 18125–18135 (2015).Jeong, J. & Eide, D. J. The SLC39 family of zinc transporters. Molecular Aspects of Medicine 34, 612–619 (2013).Huang, L., Kirschke, C. P., Zhang, Y. & Yan, Y. Y. The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 280, 15456–15463 (2005).Vallee, B. L. & Falchuk, K. H. The biochemical basis of zinc physiology. Physiological reviews 73 (1993).Ganju, N. & Eastman, A. Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemical inducers of apoptosis but not by death-receptor-initiated pathways. Cell Death Differ. 10, 652–61 (2003).Chai, F., Truong-Tran, A. Q., Ho, L. H. & Zalewski, P. D. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol. Cell Biol. 77, 272–278 (1999).Smith, P. J., Wiltshire, M., Furon, E., Beattie, J. H. & Errington, R. J. Impact of overexpression of metallothionein-1 on cell cycle progression and zinc toxicity. Am. J. Physiol. Cell Physiol. 295, C1399–C1408 (2008).Bozym, R. A. et al. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp. Biol. Med. (Maywood). 235, 741–50 (2010).Plum, L. M., Rink, L. & Hajo, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 7, 1342–1365 (2010).Chen, C.-J. & Liao, S.-L. Zinc toxicity on neonatal cortical neurons: involvement of glutathione chelation. J. Neurochem. 85, 443–453 (2003).Chassot, A. A. et al. Confluence-induced cell cycle exit involves pre-mitotic CDK inhibition by p27Kip1 and cyclin D1 downregulation. Cell Cycle 7, 2038–2046 (2008).Spencer, S. L. et al. XThe proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155, 369–383 (2013).Walsh, K. & Perlman, H. Cell cycle exit upon myogenic differentiation. Curr. Opin. Genet. Dev. 7, 597–602 (1997).Puri, P. L. & Sartorelli, V. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. Journal of Cellular Physiology 185, 155–173 (2000).Zammit, P. S., Partridge, T. A. & Yablonka-Reuveni, Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54, 1177–1191 (2006).McCord, M. C. & Aizenman, E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front. Aging Neurosci. 6, 1–16 (2014).Dirksen, R. T. Sarcoplasmic reticulum–mitochondrial through-space coupling in skeletal muscle. This paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic. Appl. Physiol. Nutr. Metab. 34, 389–395 (2009).Groth, C., Sasamura, T., Khanna, M. R., Whitley, M. & Fortini, M. E. Protein trafficking abnormalities in Drosophila tissues with impaired activity of the ZIP7 zinc transporter Catsup. Development 140, 3018–3027 (2013).Ellis, C. D. et al. Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J. Cell Biol. 166, 325–335 (2004).Koch, U., Lehal, R. & Radtke, F. Stem cells living with a Notch. Development 140, 689–704 (2013).Gardner, S., Anguiano, M. & Rotwein, P. Defining Akt actions in muscle differentiation. Am. J. Physiol. Physiol. 303, C1292–C1300 (2012).Knight, J. D. & Kothary, R. The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skelet. Muscle 1, 29 (2011).Roth, S. M. Genetic aspects of skeletal muscle strength and mass with relevance to sarcopenia. Bonekey Rep. 1, 1–7 (2012).Mebratu, Y. & Tesfaigzi, Y. How ERK1/2 Activation Controls Cell Proliferation and Cell Death Is Subcellular Localization the Answer? Cell Cycle 8, 1168–1175 (2009)
Mitochondrial ATP synthase: architecture, function and pathology
Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F1, situated in the mitochondrial matrix, and Fo, located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions
Financial aspects of public-private partnership project management in the fisheries sector
The results of fisheries are effects of important economic and social importance. Therefore, the problems of the development of the fishing industry occupy a special place in economic policy at all levels of government. There is a fairly large set of measures for such a policy. Nevertheless, the scale and complexity of the problems in the fishing industry in our country necessitates a further search for optimal forms of interaction between the state and the organizations of the fishing business. The basis of interaction can be the PPP mechanism — one of the generally recognized ways to solve complex socio-economic problems. The purpose of this article is to develop an approach to the organization of financial management of PPP projects in the field of fisheries. The theoretical basis of the work is the provisions of the methodology of financial planning and project finance management. The article discusses the financial and economic aspects of PPP projects in the fishing industry. A multilevel model for organizing financial planning of such projects is proposed, recommendations are given on its practical application and the selection of tools that serve as its filling. It is concluded that the goal of financial planning of PPP projects in the fishing industry is to ensure long-term sustainable development of enterprises, consistent with the priorities and goals of social development. The scientific novelty of the work done is to systematize the views on PPP finance management and develop on this basis an approach to organizing a financial planning system within the framework of PPP projects taking into account the specifics of the fishing industry. The practical value of the results of this study is determined by the possibility of using them to develop measures of state economic policy in the field of the fishery complex, in particular, in the formation of state and regional target programs, as well as in the implementation of PPP mechanisms in the industry. It seems that the detailed study of financial planning tools and the development of practice-oriented methods that ensure the effectiveness of the PPP financial management system in the fishing industry can become a promising area for further research
- …