348,385 research outputs found
Chiral expansion of the decay width
A chiral field theory of mesons has been applied to study the contribution of
the current quark masses to the decay width at
the next leading order. enhancement has been predicted and there is no
new parameter.Comment: 9 page
Gr\"obner-Shirshov bases for categories
In this paper we establish Composition-Diamond lemma for small categories. We
give Gr\"obner-Shirshov bases for simplicial category and cyclic category.Comment: 20 page
The pointer basis and the feedback stabilization of quantum systems
The dynamics for an open quantum system can be `unravelled' in infinitely
many ways, depending on how the environment is monitored, yielding different
sorts of conditioned states, evolving stochastically. In the case of ideal
monitoring these states are pure, and the set of states for a given monitoring
forms a basis (which is overcomplete in general) for the system. It has been
argued elsewhere [D. Atkins et al., Europhys. Lett. 69, 163 (2005)] that the
`pointer basis' as introduced by Zurek and Paz [Phys. Rev. Lett 70,
1187(1993)], should be identified with the unravelling-induced basis which
decoheres most slowly. Here we show the applicability of this concept of
pointer basis to the problem of state stabilization for quantum systems. In
particular we prove that for linear Gaussian quantum systems, if the feedback
control is assumed to be strong compared to the decoherence of the pointer
basis, then the system can be stabilized in one of the pointer basis states
with a fidelity close to one (the infidelity varies inversely with the control
strength). Moreover, if the aim of the feedback is to maximize the fidelity of
the unconditioned system state with a pure state that is one of its conditioned
states, then the optimal unravelling for stabilizing the system in this way is
that which induces the pointer basis for the conditioned states. We illustrate
these results with a model system: quantum Brownian motion. We show that even
if the feedback control strength is comparable to the decoherence, the optimal
unravelling still induces a basis very close to the pointer basis. However if
the feedback control is weak compared to the decoherence, this is not the case
"Hidden” degassing from streams: estimation of the CO2 release from the thermal springs of Sperchios Basin, Greece
Areas located at plate boundaries are characterized by the presence of seismic, volcanic, and geothermal activity, as well as ore deposition. Such processes are enhanced by the circulation of hydrothermal fluids in the crust transporting volatiles from either the deep crust or the mantle to the surface. Intense geodynamic activity is also taking place in Greece giving rise to: (i) the highest seismicity in Europe, (ii) the presence of an active volcanic arc and numerous areas of anomalously high geothermal gradient, and (iii) a widespread occurrence of thermal springs. Elevated heat flow values are concentrated in Sperchios basin, an area characterised by a system of deeply rooted extensional faults and quaternary volcanic activity. This regime favoured the formation of hydrothermal systems, the surface expression of which are thermal springs with intense bubbling of CO2-rich gases. Flux measurements in the bubbling pools were made with the floating chamber method. The highest bubbling CO2 output is found in Thermopyles and Psoroneria (1 and 2 t/d, respectively). The outgoing channels of these springs have an elevated flow (>250 l/s) of gas-charged water (>15 mmol/l of CO2). Although no bubbling is noticed along the stream, the CO2 content decreases by an order of magnitude after few hundreds of metres, indicating an intense degassing from the water. Taking into account the water flow and the amount of CO2 lost to the atmosphere, the CO2 output of the outgoing channels is quantified in >10 t/d for Thermopyles and 9 t/d for Psoroneria. An estimation is also made at Ypati, Kamena Vourla, Koniavitis and Edipsos, where the mean values reach 1 t/d of CO2 for each spring. The obtained values are always higher respect to the estimated outputs from visible bubbling, suggesting that most of the degassing is “hidden”. Furthermore, the loss of CO2 from the water determines a shift in dissolved carbonate species as demonstrated by the pH increase along the channel that leads eventually to an oversaturation in carbonate minerals and therefore travertine deposition. To sum up, the total CO2 output of the study area is estimated at 30 t/d, with the major contribution deriving from the degassing along the outflow channels of the thermal springs. Such output is comparable to that of the single active volcanic systems along the South Aegean Volcanic Arc (Sousaki, Methana, Milos, Santorini, Kos and Nisyros) and highlights the importance of “hidden” degassing along CO2-oversaturated streams
- …