149 research outputs found

    Depinning of a superfluid vortex line by Kelvin waves

    Full text link
    We measure the interaction of a single superfluid vortex with surface irregularities. While vortex pinning in superconductors usually becomes weaker at higher temperatures, we find the opposite behavior. The pinning steadily increases throughout our measurement range, from 0.15Tc to over 0.5Tc. We also find that moving the other end of the vortex decreases the pinning, so we propose Kelvin waves along the vortex as a depinning mechanism.Comment: 5 figures; substantial revision including 2 new figure

    Classical electromagnetic field theory in the presence of magnetic sources

    Get PDF
    Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.Comment: 10 pages, no figure

    Smooth vortex precession in superfluid 4He

    Full text link
    We have measured a precessing superfluid vortex line, stretched from a wire to the wall of a cylindrical cell. By contrast to previous experiments with a similar geometry, the motion along the wall is smooth. The key difference is probably that our wire is substantially off center. We verify several numerical predictions about the motion, including an asymmetry in the precession signature, the behavior of pinning events, and the temperature dependence of the precession.Comment: 8 pages, 8 figure

    Fermion Quasi-Spherical Harmonics

    Full text link
    Spherical Harmonics, Yℓm(θ,ϕ)Y_\ell^m(\theta,\phi), are derived and presented (in a Table) for half-odd-integer values of ℓ\ell and mm. These functions are eigenfunctions of L2L^2 and LzL_z written as differential operators in the spherical-polar angles, θ\theta and ϕ\phi. The Fermion Spherical Harmonics are a new, scalar and angular-coordinate-dependent representation of fermion spin angular momentum. They have 4π4\pi symmetry in the angle ϕ\phi, and hence are not single-valued functions on the Euclidean unit sphere; they are double-valued functions on the sphere, or alternatively are interpreted as having a double-sphere as their domain.Comment: 16 pages, 2 Tables. Submitted to J.Phys.

    A Method of Intervals for the Study of Diffusion-Limited Annihilation, A + A --> 0

    Full text link
    We introduce a method of intervals for the analysis of diffusion-limited annihilation, A+A -> 0, on the line. The method leads to manageable diffusion equations whose interpretation is intuitively clear. As an example, we treat the following cases: (a) annihilation in the infinite line and in infinite (discrete) chains; (b) annihilation with input of single particles, adjacent particle pairs, and particle pairs separated by a given distance; (c) annihilation, A+A -> 0, along with the birth reaction A -> 3A, on finite rings, with and without diffusion.Comment: RevTeX, 13 pages, 4 figures, 1 table. References Added, and some other minor changes, to conform with final for
    • …
    corecore