2,500 research outputs found
Rotationally-invariant slave-bosons for Strongly Correlated Superconductors
We extend the rotationally invariant formulation of the slave-boson method to
superconducting states. This generalization, building on the recent work by
Lechermann et al. [Phys. Rev. B {\bf 76}, 155102 (2007)], allows to study
superconductivity in strongly correlated systems. We apply the formalism to a
specific case of strongly correlated superconductivity, as that found in a
multi-orbital Hubbard model for alkali-doped fullerides, where the
superconducting pairing has phonic origin, yet it has been shown to be favored
by strong correlation owing to the symmetry of the interaction. The method
allows to treat on the same footing the strong correlation effects and the
interorbital interactions driving superconductivity, and to capture the physics
of strongly correlated superconductivity, in which the proximity to a Mott
transition favors the superconducting phenomenon.Comment: 18 pages, 7 figure
Effect of simulated in-flight thrust reversing on vertical-tail loads of F-18 and F-15 airplane models
Investigations were conducted in the Langley 16-Foot Transonic Tunnel to provide data on a 0.10-scale model of the prototype F-18 airplane and a 0.047-scale model of the F-15 three-surface configuration (canard, wing, and horizontal tails). Test data were obtained at static conditions and at Mach numbers from 0.6 to 1.2 over an angle-of-attack range from 2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 8.0
Synergy between Hund-Driven Correlations and Boson-Mediated Superconductivity
Multiorbital systems such as the iron-based superconductors provide a new avenue to attack the long-standing problem of superconductivity in strongly correlated systems. In this work we study the superconductivity driven by a generic bosonic mechanism in a multiorbital model including the full dynamical electronic correlations induced by the Hubbard U and the Hund's coupling. We show that superconductivity survives much more in a Hund's metal than in an ordinary correlated metal with the same degree of correlation. The redistribution of spectral weight characteristic of the Hund's metal reflects also in the enhancement of the orbital-selective character of the superconducting gaps, in agreement with experiments in iron-based superconductors
Effect of mesoscopic inhomogeneities on local tunnelling density of states
We carry out a theoretical analysis of the momentum dependence of the
Fourier-transformed local density of states (LDOS) in the superconducting
cuprates within a model considering the interference of quasiparticles
scattering on quenched impurities. The impurities introduce an external
scattering potential, which is either nearly local in space or it can acquire a
substantial momentum dependence due to a possible strong momentum dependence of
the electronic screening near a charge modulation instability. The key new
effect that we introduce is an additional mesoscopic disorder aiming to
reproduce the inhomogeneities experimentally observed in scanning tunnelling
microscopy. The crucial effect of this mesoscopic disorder is to give rise to
point-like spectroscopic features, to be contrasted with the curve-like shape
of the spectra previously calculated within the interfering-quasiparticle
schemes. It is also found that stripe-like charge modulations play a relevant
role to correctly reproduce all the spectral features of the experiments.Comment: 11 pages and 5 figure
An assessment of the effect of supersonic aircraft operations on the stratospheric ozone content
An assessment of the potential effect on stratospheric ozone of an advanced supersonic transport operations is presented. This assessment, which was undertaken because of NASA's desire for an up-to-date evaluation to guide programs for the development of supersonic technology and improved aircraft engine designs, uses the most recent chemical reaction rate data. From the results of the present assessment it would appear that realistic fleet sizes should not cause concern with regard to the depletion of the total ozone overburden. For example, the NOx emission of one type designed to cruise at 20 km altitude will cause the ozone overburden to increase by 0.03% to 0.12%, depending upon which vertical transport is used. These ozone changes can be compared with the predictions of a 1.74% ozone decrease (for 100 Large SST's flying at 20 km) made in 1974 by the FAA's Climatic Impact Assessment Program
Kinks: Fingerprints of strong electronic correlations
The textbook knowledge of solid state physics is that the electronic specific
heat shows a linear temperature dependence with the leading corrections being a
cubic term due to phonons and a cubic-logarithmic term due to the interaction
of electrons with bosons. We have shown that this longstanding conception needs
to be supplemented since the generic behavior of the low-temperature electronic
specific heat includes a kink if the electrons are sufficiently strongly
correlatedComment: 4 pages, 1 figure, ICM 2009 conference proceedings (to appear in
Journal of Physics: Conference Series
Thermodynamic properties of Holstein polarons and the effects of disorder
The ground state and finite temperature properties of polarons are studied
considering a two-site and a four-site Holstein model by exact diagonalization
of the Hamiltonian. The kinetic energy, Drude weight, correlation functions
involving charge and lattice deformations, and the specific heat have been
evaluated as a function of electron-phonon (e-ph) coupling strength and
temperature. The effects of site diagonal disorder on the above properties have
been investigated. The disorder is found to suppress the kinetic energy and the
Drude weight, reduces the spatial extension of the polaron, and makes the
large-to-small polaron crossover smoother. Increasing temperature also plays
similar role. For strong coupling the kinetic energy arises mainly from the
incoherent hopping processes owing to the motion of electrons within the
polaron and is almost independent of the disorder strength. From the coherent
and incoherent contributions to the kinetic energy, the temperature above which
the incoherent part dominates is determined as a function of e-ph coupling
strength.Comment: 17 pages. 17 figure
Anomalous impurity effects in nonadiabatic superconductors
We show that, in contrast with the usual electron-phonon Migdal-Eliashberg
theory, the critical temperature Tc of an isotropic s-wave nonadiabatic
superconductor is strongly reduced by the presence of diluted non-magnetic
impurities. Our results suggest that the recently observed Tc-suppression
driven by disorder in K3C60 [Phys. Rev. B vol.55, 3866 (1997)] and in
Nd(2-x)CexCuO(4-delta) [Phys. Rev. B vol.58, 8800 (1998)] could be explained in
terms of a nonadiabatic electron-phonon coupling. Moreover, we predict that the
isotope effect on Tc has an impurity dependence qualitatively different from
the one expected for anisotropic superconductors.Comment: 10 pages, euromacr.tex, europhys.sty, 6 figures. Replaced with
accepted version (Europhysics Letters
Two-dimensional model studies of the effect of supersonic aircraft operations on the stratospheric ozone content
For a fleet of 250 aircraft, the change in the ozone column is predicted to be very close to zero; in fact, the ozone overburden may actually increase as a result of show that above 25 to 30 km the ozone abundance decreases via catalytic destruction, but at lower heights it increases, mainly as a result of coupling with odd hydrogen species. Water vapor released in the engine exhaust is predicted to cause ozone decreases; for the hypothetical engines used in the study, the total column ozone changes due to water vapor emission largely offset the predicted ozone increases due to NOx emission. The actual effect of water vapor may be less than calculated because present models do not include thermal feedback. Feedback refers to the cooling effect of additional water vapor that would tend to slow the NOx reactions which destroy ozone
Topological gap opening without symmetry breaking from dynamical quantum correlations
Topological phase transitions are typically associated with the formation of gapless states. Spontaneous symmetry breaking can lead to a gap opening, thereby obliterating the topological nature of the system. Here we highlight a completely different destiny for a topological transition in the presence of interaction. Solving a Bernevig-Hughes-Zhang model with local interaction, we show that dynamical quantum fluctuations can lead to the opening of a gap without any symmetry breaking. As we vary the interaction and the bare mass of the model, the continuous gapless topological transition turns into a first-order one, associated with the presence of a massive Dirac fermion at the transition point, showing a Gross-Neveu critical behavior near the quantum critical endpoint. We identify the gap opening as a condensed matter analog of the Coleman-Weinberg mechanism of mass generation
- …