6,705 research outputs found

    Reentrant glass transition in a colloid-polymer mixture with depletion attractions

    Full text link
    Performing light scattering experiments we show that introducing short-ranged attraction to a colloidal suspension of nearly hard spheres by addition of free polymer produces new glass transition phenomena. We observe a dramatic acceleration of the density fluctuations amounting to the melting of a colloidal glass. Increasing the strength of the attractions the system freezes into another nonergodic state sharing some qualitative features with gel states occurring at lower colloid packing fractions. This reentrant glass transition is in qualitative agreement with recent theoretical predictions.Comment: 14 pages, 3 figure

    The hydrogen atom in an electric field: Closed-orbit theory with bifurcating orbits

    Full text link
    Closed-orbit theory provides a general approach to the semiclassical description of photo-absorption spectra of arbitrary atoms in external fields, the simplest of which is the hydrogen atom in an electric field. Yet, despite its apparent simplicity, a semiclassical quantization of this system by means of closed-orbit theory has not been achieved so far. It is the aim of this paper to close that gap. We first present a detailed analytic study of the closed classical orbits and their bifurcations. We then derive a simple form of the uniform semiclassical approximation for the bifurcations that is suitable for an inclusion into a closed-orbit summation. By means of a generalized version of the semiclassical quantization by harmonic inversion, we succeed in calculating high-quality semiclassical spectra for the hydrogen atom in an electric field

    An algorithm for calculating the Lorentz angle in silicon detectors

    Full text link
    Future experiments will use silicon sensors in the harsh radiation environment of the LHC (Large Hadron Collider) and high magnetic fields. The drift direction of the charge carriers is affected by the Lorentz force due to the high magnetic field. Also the resulting radiation damage changes the properties of the drift. In this paper measurements of the Lorentz angle of electrons and holes before and after irradiation are reviewed and compared with a simple algorithm to compute the Lorentz angle.Comment: 13 pages, 7 figures, final version accepted by NIMA. Mainly clarifications included and slightly shortene

    Photoabsorption spectra of the diamagnetic hydrogen atom in the transition regime to chaos: Closed orbit theory with bifurcating orbits

    Full text link
    With increasing energy the diamagnetic hydrogen atom undergoes a transition from regular to chaotic classical dynamics, and the closed orbits pass through various cascades of bifurcations. Closed orbit theory allows for the semiclassical calculation of photoabsorption spectra of the diamagnetic hydrogen atom. However, at the bifurcations the closed orbit contributions diverge. The singularities can be removed with the help of uniform semiclassical approximations which are constructed over a wide energy range for different types of codimension one and two catastrophes. Using the uniform approximations and applying the high-resolution harmonic inversion method we calculate fully resolved semiclassical photoabsorption spectra, i.e., individual eigenenergies and transition matrix elements at laboratory magnetic field strengths, and compare them with the results of exact quantum calculations.Comment: 26 pages, 9 figures, submitted to J. Phys.

    Positive Least Energy Solutions and Phase Separation for Coupled Schrodinger Equations with Critical Exponent: Higher Dimensional Case

    Full text link
    We study the following nonlinear Schr\"{o}dinger system which is related to Bose-Einstein condensate: {displaymath} {cases}-\Delta u +\la_1 u = \mu_1 u^{2^\ast-1}+\beta u^{\frac{2^\ast}{2}-1}v^{\frac{2^\ast}{2}}, \quad x\in \Omega, -\Delta v +\la_2 v =\mu_2 v^{2^\ast-1}+\beta v^{\frac{2^\ast}{2}-1} u^{\frac{2^\ast}{2}}, \quad x\in \om, u\ge 0, v\ge 0 \,\,\hbox{in \om},\quad u=v=0 \,\,\hbox{on \partial\om}.{cases}{displaymath} Here \om\subset \R^N is a smooth bounded domain, 2:=2NN22^\ast:=\frac{2N}{N-2} is the Sobolev critical exponent, -\la_1(\om)0 and β0\beta\neq 0, where \lambda_1(\om) is the first eigenvalue of Δ-\Delta with the Dirichlet boundary condition. When \bb=0, this is just the well-known Brezis-Nirenberg problem. The special case N=4 was studied by the authors in (Arch. Ration. Mech. Anal. 205: 515-551, 2012). In this paper we consider {\it the higher dimensional case N5N\ge 5}. It is interesting that we can prove the existence of a positive least energy solution (u_\bb, v_\bb) {\it for any β0\beta\neq 0} (which can not hold in the special case N=4). We also study the limit behavior of (u_\bb, v_\bb) as β\beta\to -\infty and phase separation is expected. In particular, u_\bb-v_\bb will converge to {\it sign-changing solutions} of the Brezis-Nirenberg problem, provided N6N\ge 6. In case \la_1=\la_2, the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case N=4.Comment: 48 pages. This is a revised version of arXiv:1209.2522v1 [math.AP

    Tests of silicon sensors for the CMS pixel detector

    Full text link
    The tracking system of the CMS experiment, currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland), will include a silicon pixel detector providing three spacial measurements in its final configuration for tracks produced in high energy pp collisions. In this paper we present the results of test beam measurements performed at CERN on irradiated silicon pixel sensors. Lorentz angle and charge collection efficiency were measured for two sensor designs and at various bias voltages.Comment: Talk presented at 6th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors, September 29-October 1, 2003, Firenze, Italy. Proceedings will be published in Nuclear Instr. & Methods in Phys. Research, Section

    Desingularization of vortices for the Euler equation

    Full text link
    We study the existence of stationary classical solutions of the incompressible Euler equation in the plane that approximate singular stationnary solutions of this equation. The construction is performed by studying the asymptotics of equation -\eps^2 \Delta u^\eps=(u^\eps-q-\frac{\kappa}{2\pi} \log \frac{1}{\eps})_+^p with Dirichlet boundary conditions and qq a given function. We also study the desingularization of pairs of vortices by minimal energy nodal solutions and the desingularization of rotating vortices.Comment: 40 page

    Cyclotron-resonant exciton transfer between the nearly free and strongly localized radiative states of a two-dimensional hole gas in a high magnetic field

    Full text link
    Avoided crossing of the emission lines of a nearly free positive trion and a cyclotron replica of an exciton bound to an interface acceptor has been observed in the magneto-photoluminescence spectra of p-doped GaAs quantum wells. Identification of the localized state depended on the precise mapping of the anti-crossing pattern. The underlying coupling is caused by an exciton transfer combined with a resonant cyclotron excitation of an additional hole. The emission spectrum of the resulting magnetically tunable coherent state probes weak localization in the quantum well.Comment: 5 pages, 5 figure

    Lorentz angle measurements in irradiated silicon detectors between 77 K and 300 K

    Get PDF
    Future experiments are using silicon detectors in a high radiation environment and in high magnetic fields. The radiation tolerance of silicon improves by cooling it to temperatures below 180 K. At low temperatures the mobility increases, which leads to larger deflections of the charge carriers by the Lorentz force. A good knowledge of the Lorentz angle is needed for design and operation of silicon detectors. We present measurements of the Lorentz angle between 77 K and 300 K before and after irradiation with a primary beam of 21 MeV protons.Comment: 13 pages, 9 figures, submitted to ICHEP2000, Osaka, Japa
    corecore