10,100 research outputs found

    Impact of Inter-Country Distances on International Tourism

    Full text link
    Tourism is a worldwide practice with international tourism revenues increasing from US\$495 billion in 2000 to US\$1340 billion in 2017. Its relevance to the economy of many countries is obvious. Even though the World Airline Network (WAN) is global and has a peculiar construction, the International Tourism Network (ITN) is very similar to a random network and barely global in its reach. To understand the impact of global distances on local flows, we map the flow of tourists around the world onto a complex network and study its topological and dynamical balance. We find that although the WAN serves as infrastructural support for the ITN, the flow of tourism does not correlate strongly with the extent of flight connections worldwide. Instead, unidirectional flows appear locally forming communities that shed light on global travelling behaviour inasmuch as there is only a 15% probability of finding bidirectional tourism between a pair of countries. We conjecture that this is a consequence of one-way cyclic tourism by analyzing the triangles that are formed by the network of flows in the ITN. Finally, we find that most tourists travel to neighbouring countries and mainly cover larger distances when there is a direct flight, irrespective of the time it takes

    Theory of Andreev reflection in a two-orbital model of iron-pnictide superconductors

    Full text link
    A recently developed theory for the problem of Andreev reflection between a normal metal (N) and a multiband superconductor (MBS) assumes that the incident wave from the normal metal is coherently transmitted through several bands inside the superconductor. Such splitting of the probability amplitude into several channels is the analogue of a quantum waveguide. Thus, the appropriate matching conditions for the wave function at the N/MBS interface are derived from an extension of quantum waveguide theory. Interference effects between the transmitted waves inside the superconductor manifest themselves in the conductance. We provide results for a FeAs superconductor, in the framework of a recently proposed effective two-band model and two recently proposed gap symmetries: in the sign-reversed s-wave (Δcos(kx)cos(ky)\Delta\cos(k_x)\cos(k_y)) scenario resonant transmission through surface Andreev bound states (ABS) at nonzero energy is found as well as destructive interference effects that produce zeros in the conductance; in the extended s-wave (Δ[cos(kx)+cos(ky)]\Delta[\cos(k_x)+\cos(k_y)]) scenario no ABS at finite energy are found.Comment: 4 pages, 5 figure

    Optimal distribution of active piezoelectric elements for noise attenuation in sandwich panels

    Get PDF
    In this paper, a multiobjective optimization approach for obtaining the optimal distribution of surface-bonded piezoelectric sensors and actuators for noise attenuation in sandwich panels is presented. The noise attenuation is achieved by using negative velocity feedback control with co-located sensors and actuators. The control gains are also optimized in order to obtain the most efficient noise attenuation in a given frequency band. An in-house implementation of a viscoelastic soft core sandwich plate finite element, including surface-bonded piezoelectric sensors and actuators with active control capabilities, is used for obtaining the frequency response of the panels. The sound transmission capability of the panels is evaluated using the radiated sound power, along with the Rayleigh integral approach, which is suitable for lightly coupled structural/acoustic problems. The Direct MultiSearch (DMS) optimization algorithm is used to minimize the added weight due to the piezoelectric material, minimizing also the number of required controllers and maximizing the noise attenuation. The total length of the radiated sound power curve is shown to be an effective measure of noise attenuation in a given frequency band. Trade-off Pareto fronts and the obtained optimal configurations are presented and discussed.info:eu-repo/semantics/publishedVersio

    Phase diagram and magnetic collective excitations of the Hubbard model in graphene sheets and layers

    Full text link
    We discuss the magnetic phases of the Hubbard model for the honeycomb lattice both in two and three spatial dimensions. A ground state phase diagram is obtained depending on the interaction strength U and electronic density n. We find a first order phase transition between ferromagnetic regions where the spin is maximally polarized (Nagaoka ferromagnetism) and regions with smaller magnetization (weak ferromagnetism). When taking into account the possibility of spiral states, we find that the lowest critical U is obtained for an ordering momentum different from zero. The evolution of the ordering momentum with doping is discussed. The magnetic excitations (spin waves) in the antiferromagnetic insulating phase are calculated from the random-phase-approximation for the spin susceptibility. We also compute the spin fluctuation correction to the mean field magnetization by virtual emission/absorpion of spin waves. In the large UU limit, the renormalized magnetization agrees qualitatively with the Holstein-Primakoff theory of the Heisenberg antiferromagnet, although the latter approach produces a larger renormalization
    corecore