105 research outputs found
Recommended from our members
Emittance measurements for the Illinois/CEBAF polarized electron source
The transverse thermal properties of the electrons photoemitted from GaAs determine the intrinsic beam emittance, an important quantity in applications such as polarized electron sources and high-brightness sources. In this paper, emittance measurements using the Illinois/CEBAF polarized electron source are described. The emittance was measured as a function of both the laser beam spot size and laser wavelength at low currents. The data was used to infer the transverse thermal energy of the electrons photoemitted from GaAs for wavelengths between 514 and 840 nm. Near the bandgap the transverse energy is {approximately}34 meV, a factor of 3 lower than that of the beam from a typical thermionic electron gun. 8 refs., 2 figs
Preliminary evidence of dual-marked lymphocytes in thoracic duct lymph fluid
Thoracic duct lymphocytes from patients receiving thoracic duct drainage as a pretransplant therapy were examined for cell surface markers. Patients followed over the drainage time period showed a variable but decreasing percentage of E-rosette-positive cells in the lymph fluid. A substantial percentage of these E-rosette-positive cells also had C3 receptors on their cell surface. Reactions of the whole lymphocytes with a heteroantisera to human B-lymphocyte antigens reflected the increasing proportion of B cells in the sample, but also indicated that a fraction of the T cells have Ia-like antigens on their surface. Some cells may have all 3 surface marker characteristics. Significance of these cells with respect to graft survival is discussed
PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons
An experiment demonstrating a new method for producing polarized positrons has been performed at the CEBAF accelerator at Jefferson Laboratory. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e+/eâ pairs originating from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a 1.0 mm tungsten pair-production target. This paper describes preliminary results of measurements using an 8.2 MeV/c electron beam with polarization 84% to generate positrons in the range of 3.1 to 6.2 MeV/c with polarization as high as âŒ80%
Inclusion of virtual nuclear excitations in the formulation of the (e,e'N)
A wave-function framework for the theory of the (e,e'N) reaction is presented
in order to justify the use of coupled channel equations in the usual Feynman
matrix element. The overall wave function containing the electron and nucleon
coordinates is expanded in a basis set of eigenstates of the nuclear
Hamiltonian, which contain both bound states as well as continuum states.. The
latter have an ingoing nucleon with a variable momentum Q incident on the
daughter nucleus as a target, with as many outgoing channels as desirable. The
Dirac Eqs. for the electron part of the wave function acquire inhomogeneous
terms, and require the use of distorted electron Green's functions for their
solutions. The condition that the asymptotic wave function contain only the
appropriate momentum Q_k for the outgoing nucleon, which corresponds to the
electron momentum k through energy conservation, is achieved through the use of
the steepest descent saddle point method, commonly used in three-body
calculations.Comment: 30 page
Measurement of the Proton's Neutral Weak Magnetic Form Factor
We report the first measurement of the parity-violating asymmetry in elastic
electron scattering from the proton. The asymmetry depends on the neutral weak
magnetic form factor of the proton which contains new information on the
contribution of strange quark-antiquark pairs to the magnetic moment of the
proton. We obtain the value n.m. at
(GeV/c).Comment: 4 pages TEX, text available at
http://www.krl.caltech.edu/preprints/OAP.htm
The Continuous Electron Beam Accelerator Facility at 12 GeV
This review paper describes the energy-upgraded Continuous Electron Beam Accelerator Facility (CEBAF) accelerator. This superconducting linac has achieved 12 GeV beam energy by adding 11 new high-performance cryomodules containing 88 superconducting cavities that have operated cw at an average accelerating gradient of 20 MV/m. After reviewing the attributes and performance of the previous 6 GeV CEBAF accelerator, we discuss the upgraded CEBAF accelerator system in detail with particular attention paid to the new beam acceleration systems. In addition to doubling the acceleration in each linac, the upgrade included improving the beam recirculation magnets, adding more helium cooling capacity to allow the newly installed modules to run cold, adding a new experimental hall, and improving numerous other accelerator components. We review several of the techniques deployed to operate and analyze the accelerator performance and document system operating experience and performance. In the final portion of the document, we present much of the current planning regarding projects to improve accelerator performance and enhance operating margins, and our plans for ensuring CEBAF operates reliably into the future. For the benefit of potential users of CEBAF, the performance and quality measures for the beam delivered to each of the experimental halls are summarized in the Appendix
Production of highly-polarized positrons using polarized electrons at MeV energies
The Polarized Electrons for Polarized Positrons experiment at the injector of
the Continuous Electron Beam Accelerator Facility has demonstrated for the
first time the efficient transfer of polarization from electrons to positrons
produced by the polarized bremsstrahlung radiation induced by a polarized
electron beam in a high- target. Positron polarization up to 82\% have been
measured for an initial electron beam momentum of 8.19~MeV/, limited only by
the electron beam polarization. This technique extends polarized positron
capabilities from GeV to MeV electron beams, and opens access to polarized
positron beam physics to a wide community.Comment: 5 pages, 4 figure
Measurements of Deuteron Photodisintegration up to 4.0 GeV
The first measurements of the differential cross section for the d(gamma,p)n
reaction up to 4.0 GeV were performed at Continuous Electron Beam Accelerator
Facility (CEBAF) at Jefferson Lab. We report the cross sections at the proton
center-of-mass angles of 36, 52, 69 and 89 degrees. These results are in
reasonable agreement with previous measurements at lower energy. The 89 and 69
degree data show constituent-counting-rule behavior up to 4.0 GeV photon
energy. The 36 and 52 degree data disagree with the counting rule behavior. The
quantum chromodynamics (QCD) model of nuclear reactions involving reduced
amplitudes disagrees with the present data.Comment: 5 pages (REVTeX), 1 figure (postscript
A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications
CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure
- âŠ