8,069 research outputs found

    Experimental Bell Inequality Violation with an Atom and a Photon

    Full text link
    We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement characterization of this hybrid system may also be useful in quantum information applications.Comment: 4 pages, 2 figure

    Efficient fluorescence collection from trapped ions with an integrated spherical mirror

    Full text link
    Efficient collection of fluorescence from trapped ions is crucial for quantum optics and quantum computing applications, specifically, for qubit state detection and in generating single photons for ion-photon and remote ion entanglement. In a typical setup, only a few per cent of ion fluorescence is intercepted by the aperture of the imaging optics. We employ a simple metallic spherical mirror integrated with a linear Paul ion trap to achieve photon collection efficiency of at least 10% from a single Ba+^+ ion. An aspheric corrector is used to reduce the aberrations caused by the mirror and achieve high image quality.Comment: 5 pages and 4 figure

    Polarity-dependent dielectric torque in nematic liquid crystals

    Full text link
    The dielectric dispersion in the uniaxial nematic liquid crystals affects the switching dynamics of the director, as the dielectric torque is determined by not only the present values of the electric field and director but also by their past values. We demonstrate that this dielectric memory leads to an unusual contribution to the dielectric torque that is linear in the present field and thus polarity-sensitive. This torque can be used to accelerate the switch-off phase of director dynamics.Comment: 12 pages, 4 figure

    Zero-Point cooling and low heating of trapped 111Cd+ ions

    Full text link
    We report on ground state laser cooling of single 111Cd+ ions confined in radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured for two different trapping geometries and electrode materials, where no effort was made to shield the electrodes from the atomic Cd source. The low measured heating rates suggest that trapped 111Cd+ ions may be well-suited for experiments involving quantum control of atomic motion, including applications in quantum information science.Comment: 4 pages, 6 figures, Submitted to PR

    Molecular machines or pleiomorphic ensembles: signaling complexes revisited

    Get PDF
    Signaling complexes typically consist of highly dynamic molecular ensembles that are challenging to study and to describe accurately. Conventional mechanical descriptions misrepresent this reality and can be actively counterproductive by misdirecting us away from investigating critical issues

    Temporal response to harmonic driving in electroconvection

    Full text link
    The temporal evolution of the spatially periodic electroconvection (EC) patterns has been studied within the period of the driving ac voltage by monitoring the light intensity diffracted from the pattern. Measurements have been carried out on a variety of nematic systems, including those with negative dielectric and positive conductivity anisotropy, exhibiting "standard EC" (s-EC), those with both anisotropies negative exhibiting "non-standard EC" (ns-EC), as well as those with the two anisotropies positive. Theoretical predictions have been confirmed for stationary s-EC and ns-EC patterns. Transitions with Hopf bifurcation have also been studied. While traveling had no effect on the temporal evolution of dielectric s-EC, traveling conductive s-EC and ns-EC patterns exhibited a substantially altered temporal behavior with a dependence on the Hopf frequency. It has also been shown that in nematics with both anisotropies positive, the pattern develops and decays within an interval much shorter than the period, even at relatively large driving frequencies.Comment: 19 pages, 5 figure
    corecore