246 research outputs found

    The Effect of Surfaces on the Tunneling Density of States of an Anisotropically Paired Superconductor

    Full text link
    We present calculations of the tunneling density of states in an anisotropically paired superconductor for two different sample geometries: a semi-infinite system with a single specular wall, and a slab of finite thickness and infinite lateral extent. In both cases we are interested in the effects of surface pair breaking on the tunneling spectrum. We take the stable bulk phase to be of dx2−y2d_{x^2-y^2} symmetry. Our calculations are performed within two different band structure environments: an isotropic cylindrical Fermi surface with a bulk order parameter of the form Δ∌kx2−ky2\Delta\sim k_x^2-k_y^2, and a nontrivial tight-binding Fermi surface with the order parameter structure coming from an anti-ferromagnetic spin-fluctuation model. In each case we find additional structures in the energy spectrum coming from the surface layer. These structures are sensitive to the orientation of the surface with respect to the crystal lattice, and have their origins in the detailed form of the momentum and spatial dependence of the order parameter. By means of tunneling spectroscopy, one can obtain information on both the anisotropy of the energy gap, |\Delta(\p)|, as well as on the phase of the order parameter, \Delta(\p) = |\Delta(\p)|e^{i\varphi(\p)}.Comment: 14 pages of revtex text with 11 compressed and encoded figures. To appear in J. Low Temp. Phys., December, 199

    Avalanche statistics of sand heaps

    Full text link
    Large scale computer simulations are presented to investigate the avalanche statistics of sand piles using molecular dynamics. We could show that different methods of measurement lead to contradicting conclusions, presumably due to avalanches not reaching the end of the experimental table.Comment: 6 pages, 4 figure

    Odd-frequency pairing in normal metal/superconductor junctions

    Get PDF
    We study the induced odd-frequency pairing states in ballistic normal metal/superconductor (N/S) junctions where a superconductor has even-frequency symmetry in the bulk and a normal metal layer has an arbitrary length. Using the quasiclassical Green's function formalism, we demonstrate that, quite generally, the pair amplitude in the junction has an admixture of an odd-frequency component due to the breakdown of translational invariance near the N/S interface where the pair potential acquires spatial dependence. If a superconductor has even-parity pair potential (spin-singlet s-wave state), the odd-frequency pairing component with odd-parity is induced near the N/S interface, while in the case of odd-parity pair potential (spin-triplet pxp_{x}-wave or spin-singlet dxyd_{xy}-wave) the odd-frequency component with even-parity is generated. We show that in conventional s-wave junctions, the amplitude of the odd-frequency pairing state is enhanced at energies corresponding to the peaks in the local density of states (LDOS). In pxp_x- and dxyd_{xy}-wave junctions, the amplitude of the odd-frequency component on the S side of the N/S interface is enhanced at zero energy where the midgap Andreev resonant state (MARS) appears due to the sign change of the pair potential. The odd-frequency component extends into the N region and exceeds the even-frequency component at energies corresponding to the LDOS peak positions, including the MARS.Comment: 27 pages, 12 figure

    Exact microscopic analysis of a thermal Brownian motor

    Get PDF
    We study a genuine Brownian motor by hard disk molecular dynamics and calculate analytically its properties, including its drift speed and thermal conductivity, from microscopic theory.Comment: 4 pages, 5 figure

    Low-energy quasiparticle states near extended scatterers in d-wave superconductors and their connection with SUSY quantum mechanics

    Get PDF
    Low-energy quasiparticle states, arising from scattering by single-particle potentials in d-wave superconductors, are addressed. Via a natural extension of the Andreev approximation, the idea that sign-variations in the superconducting pair-potential lead to such states is extended beyond its original setting of boundary scattering to the broader context of scattering by general single-particle potentials, such as those due to impurities. The index-theoretic origin of these states is exhibited via a simple connection with Witten's supersymmetric quantum-mechanical model.Comment: 5 page

    Tunneling into Current-Carrying Surface States of High Tc_c Superconductors

    Full text link
    Theoretical results for the ab-plane tunneling conductance in the d-wave model for high Tc superconductors are presented. The d-wave model predicts surface bound states below the maximum gap. A sub-dominant order parameter, stabilized by the surface, leads to a splitting of the zero-bias conductance peak (ZBCP) in zero external field and to spontaneous surface currents. In a magnetic field screening currents shift the quasiparticle bound state spectrum and lead to a voltage splitting of the ZBCP that is linear in H at low fields, and saturates at a pairbreaking critical field of order 3 Tesla. Comparisons with recent experimental results on Cu/YBCO junctions are presented.Comment: 4 pages in a RevTex (3.0) file plus 3 Figures in PostScript. To appear in Phys. Rev. Let

    Thermodynamic properties of thin films of superfluid 3He-A

    Full text link
    The pairing correlations in superfluid He-3 are strongly modified by quasiparticle scattering off a surface or an interface. We present theoretical results and predictions for the order parameter, the quasiparticle excitation spectrum and the free energy for thin films of superfluid He-3. Both specular and diffuse scattering by a substrate are considered, while the free surface is assumed to be a perfectly reflecting specular boundary. The results are based on self-consistent calculations of the order parameter and quasiparticle excitation spectrum at zero pressure. We obtain new results for the phase diagram, free energy, entropy and specific heat of thin films of superfluid He-3.Comment: Replaced with an updated versio

    D-Wave Superconductors near Surfaces and Interfaces: A Scattering Matrix Approach within the Quasiclassical Technique

    Get PDF
    A recently developed method [A. Shelankov and M. Ozana, Phys. Rev. B 61, 7077 (2000)] is applied to investigate d-wave superconductors in the vicinity of (rough) surfaces. While this method allows the incorporation of arbitrary interfaces into the quasiclassical technique, we discuss, as examples, diffusive surfaces and boundaries with small tilted mirrors (facets). The properties of the surface enter via the scattering matrix in the boundary condition for the quasiclassical Green's function. The diffusive surface is described by an ensemble of random scattering matrices. We find that the fluctuations of the density of states around the average are small; the zero bias conductance peak broadens with increasing disorder. The faceted surface is described in the model where the scattering matrix couples m in- and m out-trajectories (m>=2). No zero bias conductance peak is found for [100] surfaces; the relation to the model of Fogelstrom et al. [Phys. Rev. Lett. 79, 281 (1997)] is discussed.Comment: RevTeX, 19 pages, 18 figure

    Two phase transitions in (s+id)-wave Bardeen-Cooper-Schrieffer superconductivity

    Full text link
    We establish universal behavior in temperature dependencies of some observables in (s+id)(s+id)-wave BCS superconductivity in the presence of a weak ss wave. There also could appear a second second-order phase transition. As temperature is lowered past the usual critical temperature TcT_c, a less ordered superconducting phase is created in dd wave, which changes to a more ordered phase in (s+id)(s+id) wave at Tc1T_{c1} (<Tc< T_c). The presence of two phase transitions manifest in two jumps in specific heat at TcT_c and Tc1T_{c1}. The temperature dependencies of susceptibility, penetration depth, and thermal conductivity also confirm the new phase transition.Comment: 6 pages, 5 post-script figures

    Thermodynamics of a d-wave Superconductor Near a Surface

    Full text link
    We study the properties of an anisotropically paired superconductor in the presence of a specularly reflecting surface. The bulk stable phase of the superconducting order parameter is taken to have dx2−y2d_{x^2-y^2} symmetry. Contributions by order parameter components of different symmetries vanish in the bulk, but may enter in the vicinity of a wall. We calculate the self-consistent order parameter and surface free energy within the quasiclassical formulation of superconductivity. We discuss, in particular, the dependence of these quantities on the degree of order parameter mixing and the surface to lattice orientation. Knowledge of the thermodynamically stable order parameter near a surface is a necessary precondition for calculating measurable surface properties which we present in a companion paper.Comment: 12 pages of revtex text with 12 compressed and encoded figures. To appear in J. Low Temp. Phys., December, 199
    • 

    corecore