4,754 research outputs found
RANDOM MATRIX THEORY APPROACH TO THE INTENSITY DISTRIBUTIONS OF WAVES PROPAGATING IN A RANDOM MEDIUM
Statistical properties of coherent radiation propagating in a quasi - 1D
random media is studied in the framework of random matrix theory. Distribution
functions for the total transmission coefficient and the angular transmission
coefficient are obtained.Comment: 8 pages, latex, no figures. Submitted to Phys.Rev.
Current fluctuations near to the 2D superconductor-insulator quantum critical point
Systems near to quantum critical points show universal scaling in their
response functions. We consider whether this scaling is reflected in their
fluctuations; namely in current-noise. Naive scaling predicts low-temperature
Johnson noise crossing over to noise power at strong
electric fields. We study this crossover in the metallic state at the 2d z=1
superconductor/insulator quantum critical point. Using a Boltzmann-Langevin
approach within a 1/N-expansion, we show that the current noise obeys a scaling
form with . We recover
Johnson noise in thermal equilibrium and at strong
electric fields. The suppression from free carrier shot noise is due to strong
correlations at the critical point. We discuss its interpretation in terms of a
diverging carrier charge or as out-of-equilibrium Johnson
noise with effective temperature .Comment: 5 page
Statistics of speckle patterns
We develop a general method for calculating statistical properties of the
speckle pattern of coherent waves propagating in disordered media. In some
aspects this method is similar to the Boltzmann-Langevin approach for the
calculation of classical fluctuations. We apply the method to the case where
the incident wave experiences many small angle scattering events during
propagation, but the total angle change remains small. In many aspects our
results for this case are different from results previously known in the
literature. The correlation function of the wave intensity at two points
separated by a distance , has a long range character. It decays as a power
of and changes sign. We also consider sensitivities of the speckles to
changes of external parameters, such as the wave frequency and the incidence
angle.Comment: 4 pages, 2 figure
String Thermodynamics in D-Brane Backgrounds
We discuss the thermal properties of string gases propagating in various
D-brane backgrounds in the weak-coupling limit, and at temperatures close to
the Hagedorn temperature. We determine, in the canonical ensemble, whether the
Hagedorn temperature is limiting or non-limiting. This depends on the
dimensionality of the D-brane, and the size of the compact dimensions. We find
that in many cases the non-limiting behaviour manifest in the canonical
ensemble is modified to a limiting behaviour in the microcanonical ensemble and
show that, when there are different systems in thermal contact, the energy
flows into open strings on the `limiting' D-branes of largest dimensionality.
Such energy densities may eventually exceed the D-brane intrinsic tension. We
discuss possible implications of this for the survival of Dp-branes with large
values of p in an early cosmological Hagedorn regime. We also discuss the
general phase diagram of the interacting theory, as implied by the holographic
and black-hole/string correspondence principles.Comment: 50 pages, LaTeX, 4 eps figures. Added discussion of random walk
picture. Corrected technical error in the treatment of ND strings (notice
some formulas are rewritten). Conclusions unchange
Absence of weak antilocalization in ferromagnetic films
We present magnetoresistance measurements performed on ultrathin films of
amorphous Ni and Fe. In these films the Curie temperature drops to zero at
small thickness, making it possible to study the effect of ferromagnetism on
localization. We find that non-ferromagnetic films are characterized by
positive magnetoresistance. This is interpreted as resulting from weak
antilocalization due to strong Bychkov-Rashba spin orbit scattering. As the
films become ferromagnetic the magnetoresistance changes sign and becomes
negative. We analyze our data to identify the individual contributions of weak
localization, weak antilocalization and anisotropic magnetoresistance and
conclude that the magnetic order suppresses the influence of spin-orbit effects
on localization phenomena in agreement with theoretical predictions.Comment: 6 pages, 6 figure
Neutrino dispersion in external magnetic fields
We calculate the neutrino self-energy operator Sigma (p) in the presence of a
magnetic field B. In particular, we consider the weak-field limit e B <<
m_\ell^2, where m_\ell is the charged-lepton mass corresponding to the neutrino
flavor \nu_\ell, and we consider a "moderate field" m_\ell^2 << e B << m_W^2.
Our results differ substantially from the previous literature. For a moderate
field, we show that it is crucial to include the contributions from all Landau
levels of the intermediate charged lepton, not just the ground-state. For the
conditions of the early universe where the background medium consists of a
charge-symmetric plasma, the pure B-field contribution to the neutrino
dispersion relation is proportional to (e B)^2 and thus comparable to the
contribution of the magnetized plasma.Comment: 9 pages, 1 figure, revtex. Version to appear in Phys. Rev. D
(presentation improved, reference list revised, numerical error in Eq.(41)
corrected, conclusions unchanged
Some Thermodynamical Aspects of String Theory
Thermodynamical aspects of string theory are reviewed and discussed.Comment: 22 Pages plain latex; based on contributions to Golfand Memorial
Volume and Englertfest by E.Rabinovic
Gravitational lensing by gravitational waves
Gravitational lensing by gravitational wave is considered. We notice that
although final and initial direction of photons coincide, displacement between
final and initial trajectories occurs. This displacement is calculated
analytically for the plane gravitational wave pulse. Estimations for
observations are discussed.Comment: 9 pages, 3 figure
On chaotic behavior of gravitating stellar shells
Motion of two gravitating spherical stellar shells around a massive central
body is considered. Each shell consists of point particles with the same
specific angular momenta and energies. In the case when one can neglect the
influence of gravitation of one ("light") shell onto another ("heavy") shell
("restricted problem") the structure of the phase space is described. The
scaling laws for the measure of the domain of chaotic motion and for the
minimal energy of the light shell sufficient for its escape to infinity are
obtained.Comment: e.g.: 12 pages, 8 figures, CHAOS 2005 Marc
Propagation of coherent waves in elastically scattering media
A general method for calculating statistical properties of speckle patterns
of coherent waves propagating in disordered media is developed. It allows one
to calculate speckle pattern correlations in space, as well as their
sensitivity to external parameters. This method, which is similar to the
Boltzmann-Langevin approach for the calculation of classical fluctuations,
applies for a wide range of systems: From cases where the ray propagation is
diffusive to the regime where the rays experience only small angle scattering.
The latter case comprises the regime of directed waves where rays propagate
ballistically in space while their directions diffuse. We demonstrate the
applicability of the method by calculating the correlation function of the wave
intensity and its sensitivity to the wave frequency and the angle of incidence
of the incoming wave.Comment: 19 pages, 5 figure
- …